
ROMWBW
Architecture

Version 3.0
Sunday 22 March 2020

RetroBrew Computers Group
www.retrobrewcomputers.org

Wayne Warthen
wwarthen@gmail.com

http://www.retrobrewcomputers.org
mailto:authmail

Contents

1 Overview 1

2 Background 3

3 General Design Strategy 5

4 Runtime Memory Layout 7

5 System Boot Process 8
5.1 ROM Boot . 9
5.2 Application Boot . 10
5.3 Notes . 10

6 Driver Model 12

7 Character / Emulation / Video Services 13

8 HBIOS Reference 16
8.1 Invocation . 16
8.2 Character Input/Output (CIO) 18
8.3 Disk Input/Output (DIO) . 23
8.4 Real Time Clock (RTC) . 31
8.5 Video Display Adapter (VDA) 34
8.6 System (SYS) . 45

RetroBrew Computing Group i

Section 1

Overview

RomWBW provides a complete firmware package for all of the Z80 and Z180
based systems that are available in the RetroBrew Computers Community
(see http://www.retrobrewcomputers.org) as well as support for the RC2014
platform. Each of these systems provides for a fairly large ROM memory
(typically, 512KB or more). RomWBW allows you to configure and build
appropriate contents for such a ROM.

Typically, a computer will contain a small ROM that contains the BIOS (Basic
Input/Output System) functions as well as code to start the system by booting
an operating system from a disk. Since the RetroBrew Computers Projects
provide a large ROM space, RomWBW provides a much more comprehen-
sive software package. In fact, it is entirely possible to run a fully functioning
RetroBrew Computers System with nothing but the ROM.

RomWBW firmware includes:

• System startup code (bootstrap)

• A basic system/debug monitor

• HBIOS (Hardware BIOS) providing support for the vast majority of
RetroBrew Computers I/O components

RetroBrew Computing Group 1

http://www.retrobrewcomputers.org/

Section 1. Overview RomWBW Architecture

• A complete operating system (either CP/M 2.2 or ZSDOS 1.1)

• A built-in CP/M filesystem containing the basic applications and utilities
for the operating system and hardware being used

It is appropriate to note that much of the code and components that make
up a complete RomWBW package are derived from pre-existing work. Most
notably, the embedded operating system is simply a ROM-based copy of
generic CP/M or ZSDOS. Much of the hardware support code was originally
produced by other members of the RetroBrew Computers Community.

The remainder of this document will focus on the HBIOS portion of the ROM.
HBIOS contains the vast majority of the custom-developed code for the
RetroBrew Computers hardware platforms. It provides a formal, structured
interface that allows the operating system to be hosted with relative ease.

RetroBrew Computing Group 2

Section 2

Background

The Z80 CPU architecture has a limited, 64K address range. In general,
this address space must accommodate a running application, disk operating
system, and hardware support code.

All RetroBrew Computers Z80 CPU platforms provide a physical address
space that is much larger than the CPU address space (typically 512K or
1MB physical RAM). This additional memory can be made available to the
CPU using a technique called bank switching. To achieve this, the physical
memory is divided up into chunks (banks) of 32K each. A designated area of
the CPU’s 64K address space is then reserved to “map” any of the physical
memory chunks. You can think of this as a window that can be adjusted to
view portions of the physical memory in 32K blocks. In the case of RetroBrew
Computers platforms, the lower 32K of the CPU address space is used for
this purpose (the window). The upper 32K of CPU address space is assigned
a fixed 32K area of physical memory that never changes. The lower 32K can
be “mapped” on the fly to any of the 32K banks of physical memory at a time.
The only constraint is that the CPU cannot be executing code in the lower
32K of CPU address space at the time that a bank switch is performed.

By cleverly utilizing the pages of physical RAM for specific purposes and
swapping in the correct page when needed, it is possible to utilize substan-

RetroBrew Computing Group 3

Section 2. Background RomWBW Architecture

tially more than 64K of RAM. Because the RetroBrew Computers Project has
now produced a very large variety of hardware, it has become extremely im-
portant to implement a bank switched solution to accommodate the maximum
range of hardware devices and desired functionality.

RetroBrew Computing Group 4

Section 3

General Design Strategy

The design goal is to locate as much of the hardware dependent code as
possible out of normal 64KB CP/M address space and into a bank switched
area of memory. A very small code shim (proxy) is located in the top 512
bytes of CPU memory. This proxy is responsible for redirecting all hardware
BIOS (HBIOS) calls by swapping the “driver code” bank of physical RAM into
the lower 32K and completing the request. The operating system is unaware
this has occurred. As control is returned to the operating system, the lower
32KB of memory is switched back to the original memory bank.

HBIOS is completely agnostic with respect to the operating system (it does
not know or care what operating system is using it). The operating system
makes simple calls to HBIOS to access any desired hardware functions.
Since the HBIOS proxy occupies only 512 bytes at the top of memory, the
vast majority of the CPU memory is available to the operating system and
the running application. As far as the operating system is concerned, all of
the hardware driver code has been magically implemented inside of a small
512 byte area at the top of the CPU address space.

Unlike some other Z80 bank switching schemes, there is no attempt to build
bank switching into the operating system itself. This is intentional so as to
ensure that any operating system can easily be adapted without requiring

RetroBrew Computing Group 5

Section 3. General Design Strategy RomWBW Architecture

invasive modifications to the operating system itself. This also keeps the
complexity of memory management completely away from the operating
system and applications.

There are some operating systems that have built-in support for bank switch-
ing (e.g., CP/M 3). These operating systems are allowed to make use of
the bank switched memory and are compatible with HBIOS. However, it
is necessary that the customization of these operating systems take into
account the banks of memory used by HBIOS and not attempt to use those
specific banks.

Note that all code and data are located in RAM memory during normal
execution. While it is possible to use ROM memory to run code, it would
require that more upper memory be reserved for data storage. It is simpler
and more memory efficient to keep everything in RAM. At startup (boot) all
required code is copied to RAM for subsequent execution.

RetroBrew Computing Group 6

Section 4

Runtime Memory Layout

$FE00

$D000

$8
0

00

HBIOS Proxy (RST 08)

Application Area (TPA)

Operating System

CP/M or ZSYS

CBIOS

BDOS

CCP

HBIOS
(Hardware Drivers)

Z8
0

C
PU

 A
d

d
re

ss
 S

p
ac

e
B

an
ke

d
 L

o
w

er
 3

2
K

Fi
xe

d
 U

p
p

er
 3

2K

$10000

$0000

Bank 0 Bank N-3 Bank N-2 Bank N-1 Bank N• • •

Physical RAM (32K banks)

`

RAM Disk

HBIOS Function Call
w/ Bank Switch

RomWBW Bank Switched Memory Layout

Fi
xe

d
 M

ap
pi

ng
 o

f U
pp

er
 3

2
K

 t
o

 L
as

t
B

an
k

Figure 4.1: Banked Switched Memory Layout

RetroBrew Computing Group 7

Section 5

System Boot Process

A multi-phase boot strategy is employed. This is necessary because at cold
start, the CPU is executing code from ROM in lower memory which is the
same area that is bank switched.

Boot Phase 1 copies the phase 2 code to upper memory and jumps to it
to continue the boot process. This is required because the CPU starts at
address $0000 in low memory. However, low memory is used as the area for
switching ROM/RAM banks in and out. Therefore, it is necessary to relocate
execution to high memory in order to initialize the RAM memory banks.

Boot Phase 2 manages the setup of the RAM page banks for HBIOS opera-
tion, performs hardware initialization, and then executes the boot loader.

Boot Phase 3 is the loading of the selecting operating system (or debug
monitor) by the Boot Loader. The Boot Loader is responsible for prompting
the user to select a target operating system to load, loading it into RAM,
then transferring control to it. The Boot Loader is capable of loading a target
operating system from a variety of locations including disk drives and ROM.

Note that the entire boot process is entirely operating system agnostic. It is
unaware of the operating system being loaded. The Boot Loader prompts the
user for the location of the binary image to load, but does not know anything

RetroBrew Computing Group 8

Section 5. System Boot Process RomWBW Architecture

about what is being loaded (the image is usually an operating system, but
could be any executable code image). Once the Boot Loader has loaded
the image at the selected location, it will transfer control to it. Assuming
the typical situation where the image was an operating system, the loaded
operating system will then perform it’s own initialization and begin normal
operation.

There are actually two ways to perform a system boot. The first, and most
commonly used, method is a “ROM Boot”. This refers to booting the system
directly from the startup code contained on the physical ROM chip. A ROM
Boot is always performed upon power up or when a hardware reset is
performed.

Once the system is running (operating system loaded), it is possible to reboot
the system from a system image contained on the file system. This is referred
to as an “Application Boot”. This mechanism allows a temporary copy of the
system to be uploaded and stored on the file system of an already running
system and then used to boot the system. This boot technique is useful to:
1) test a new build of a system image before programming it to the ROM; or
2) easily switch between system images on the fly.

A more detailed explanation of these two boot processes is presented below.

5.1 ROM Boot

At power on (or hardware reset), ROM page 0 is automatically mapped
to lower memory by hardware level system initialization. Page Zero (first
256 bytes of the CPU address space) is reserved to contain dispatching
instructions for interrupt instructions. Address $0000 performs a jump to the
start of the phase 1 code so that this first page can be reserved.

The phase 1 code now copies the phase 2 code from lower memory to
upper memory and jumps to it. The phase 2 code now initializes the HBIOS
by copying the ROM resident HBIOS from ROM to RAM. It subsequently

RetroBrew Computing Group 9

Section 5. System Boot Process RomWBW Architecture

calls the HBIOS initialization routine. Finally, it starts the Boot Loader which
prompts the user for the location of the target system image to execute.

Once the boot loader transfers control to the target system image, all of the
Phase 1, Phase 2, and Boot Loader code is abandoned and the space it
occupied is normally overwritten by the operating system.

5.2 Application Boot

When a new system image is built, one of the output files produced is an
actual CP/M application (an executable .COM program file). Once you have
a running CP/M (or compatible) system, you can upload/copy this application
file to the filesystem. By executing this file, you will initiate an Application
Boot using the system image contained in the application file itself.

Upon execution, the Application Boot program is loaded into memory by the
previously running operating system starting at $0100. Note that program
image contains a copy of the HBIOS to be installed and run. Once the
Application Boot program is loaded by the previous operating system, control
is passed to it and it performs a system initialization similar to the ROM Boot,
but using the image loaded in RAM.

Specifically, the code at $0100 (in low memory) copies phase 2 boot code
to upper memory and transfers control to it. The phase 2 boot code copies
the HBIOS image from application RAM to RAM, then calls the HBIOS
initialization routine. At this point, the prior HBIOS code has been discarded
and overwritten. Finally, the Boot Loader is invoked just like a ROM Boot.

5.3 Notes

1. Size of ROM disk and RAM disk will be decreased as needed to
accommodate RAM and ROM memory bank usage for the banked
BIOS.

RetroBrew Computing Group 10

Section 5. System Boot Process RomWBW Architecture

2. There is no support for interrupt driven drivers at this time. Such support
should be possible in a variety of ways, but none are yet implemented.

RetroBrew Computing Group 11

Section 6

Driver Model

The framework code for bank switching also allows hardware drivers to be
implemented mostly without concern for memory management. Drivers are
coded to simply implement the HBIOS functions appropriate for the type
of hardware being supported. When the driver code gets control, it has
already been mapped to the CPU address space and simply performs the
requested function based on parameters passed in registers. Upon return,
the bank switching framework takes care of restoring the original memory
layout expected by the operating system and application.

However, the one constraint of hardware drivers is that any data buffers that
are to be returned to the operating system or applications must be allocated
in high memory. Buffers inside of the driver’s memory bank will be swapped
out of the CPU address space when control is returned to the operating
system.

If the driver code must make calls to other code, drivers, or utilities in the
driver bank, it must make those calls directly (it must not use RST 08). This
is to avoid a nested bank switch which is not supported at this time.

RetroBrew Computing Group 12

Section 7

Character / Emulation / Video
Services

In addition to a generic set of routines to handle typical character input/output,
HBIOS also includes functionality for managing built-in video display adapters.
To start with there is a basic set of character input/output functions, the
CIOXXX functions, which allow for simple character data streams. These
functions fully encompass routing byte stream data to/from serial ports.
Note that there is a special character pseudo-device called “CRT”. When
characters are read/written to/from the CRT character device, the data is
actually passed to a built-in terminal emulator which, in turn, utilizes a set of
VDA (Video Display Adapter) functions (such as cursor positioning, scrolling,
etc.).

Figure 7.1 depicts the relationship between these components of HBIOS
video processing:

Normally, the operating system will simply utilize the CIOXXX functions to
send and receive character data. The Character I/O Services will route I/O
requests to the specified physical device which is most frequently a serial port
(such as UART or ASCI). As shown above, if the CRT device is targeted by a

RetroBrew Computing Group 13

Section 7. Character / Emulation / Video Services RomWBW Architecture

Character
I/O

Services

Emulation
Services

TTY

ANSI Video
Display
Adapter
Services

UART

ASCI

CVDU

UPD7220

N8

CIOXXX

VDAXXXO
p

e
ra

ti
n

g
Sy

st
e

m
 /

 U
ti

lit
ie

s

Others...

EMUXXX

RS-232

RS-232

VGA

VGA

NTSC

UART

ASCI

VDU

SY6545

MC8563

uPD7220

Character / Emulation / Video Services

HBIOS HARDWARE

TMS9918

VDU
NTSC

Figure 7.1: Character / Emulation / Video Services

RetroBrew Computing Group 14

Section 7. Character / Emulation / Video Services RomWBW Architecture

CIOXXX function, it will actually be routed to the Emulation Services which
implement TTY, ANSI, etc. escape sequences. The Emulation Services
subsequently rely on the Video Display Adapter Services as an additional
layer of abstraction. This allows the emulation code to be completely unaware
of the actual physical device (device independent). Video Display Adapter
(VDA) Services contains drivers as needed to handle the available physical
video adapters.

Note that the Emulation and VDA Services API functions are available to
be called directly. Doing so must be done carefully so as to not corrupt the
“state” of the emulation logic.

Before invoking CIOXXX functions targeting the CRT device, it is necessary
that the underlying layers (Emulation and VDA) be properly initialized. The
Emulation Services must be initialized to specify the desired emulation and
specific physical VDA device to target. Likewise, the VDA Services may need
to be initialized to put the specific video hardware into the proper mode, etc.

RetroBrew Computing Group 15

Section 8

HBIOS Reference

8.1 Invocation

HBIOS functions are invoked by placing the required parameters in CPU
registers and executing an RST 08 instruction. Note that HBIOS does not
preserve register values that are unused. However, it will not modify the Z80
alternate registers or IX/IY (these registers may be used within HBIOS, but
will be saved and restored internally).

Normally, applications will not call HBIOS functions directly. It is intended
that the operating system makes all HBIOS function calls. Applications that
are considered system utilities may use HBIOS, but must be careful not to
modify the operating environment in any way that the operating system does
not expect.

In general, the desired function is placed in the B register. Register C is
frequently used to specify a subfunction or a target device unit number.
Additional registers are used as defined by the specific function. Register
A should be used to return function result information. A=0 should indicate
success, other values are function specific.

The character, disk, and video device functions all refer to target devices

RetroBrew Computing Group 16

Section 8. HBIOS Reference RomWBW Architecture

using a logical device unit number that is passed in the C register. Keep in
mind that these unit numbers are assigned dynamically at HBIOS initializa-
tion during the device discovery process. The assigned unit numbers are
displayed on the consoled at the conclusion of device initialization. The unit
assignments will never change after HBIOS initialization. However, they can
change at the next boot if there have been hardware or BIOS customiza-
tion changes. Code using HBIOS functions should not assume fixed unit
assignments.

Some functions utilize pointers to memory buffers. Unless otherwise stated,
such buffers can be located anywhere in the Z80 CPU 64K address space.
However, performance sensitive buffers (primarily disk I/O buffers) will require
double-buffering if the caller’s buffer is in the lower 32K of CPU address space.
For optimal performance, such buffers should be placed in the upper 32K of
CPU address space.

RetroBrew Computing Group 17

Section 8. HBIOS Reference RomWBW Architecture

8.2 Character Input/Output (CIO)

Character input/output functions require that a Character Unit be specified
in the C register. This is the logical device unit number assigned during the
boot process that identifies all character I/O devices uniquely. A special value
of 0x80 can be used for Unit to refer to the current console device.

Character devices can usually be configured with line characteristics such
as speed, framing, etc. A word value (16 bit) is used to describe the line
characteristics as indicated below:

Bits Function

15-14 Reserved (set to 0)
13 RTS
12-8 Baud Rate (see below)
7 DTR
6 XON/XOFF Flow Control
5-3 Parity (???)
2 Stop Bits (???)
1-0 Data Bits (???)

The 5-bit baud rate value (V) is encoded as V = 75 * 2ˆX * 3ˆY. The bits are
defined as YXXXX.

Function 0x00 – Character Input (CIOIN)

Entry Parameters
B: 0x00
C: Serial Device Unit Number

Exit Results
A: Status (0=OK, else error)
E: Character Received

RetroBrew Computing Group 18

Section 8. HBIOS Reference RomWBW Architecture

Read a character from the device unit specified in register C and return the
character value in E. If no character(s) are available, this function will wait
indefinitely.

Function 0x01 – Character Output (CIOOUT)

Entry Parameters
B: 0x01
C: Serial Device Unit Number
E: Character to Send

Exit Results
A: Status (0=OK, else error)

Send character value in register E to device specified in register C. If device
is not ready to send, function will wait indefinitely.

Function 0x02 – Character Input Status (CIOIST)

Entry Parameters
B: 0x02
C: Serial Device Unit Number

Exit Results
A: Bytes Pending

Return the number of characters available to read in the input buffer of the
unit specified. If the device has no input buffer, it is acceptable to return
simply 0 or 1 where 0 means there is no character available to read and 1
means there is at least one character available to read.

Function 0x03 – Character Output Status (CIOOST)

Entry Parameters
B: 0x03

RetroBrew Computing Group 19

Section 8. HBIOS Reference RomWBW Architecture

C: Serial Device Unit Number

Exit Results
A: Output Buffer Bytes Available

Return the space available in the output buffer expressed as a character
count. If a 16 byte output buffer contained 6 characters waiting to be sent,
this function would return 10, the number of positions available in the output
buffer. If the port has no output buffer, it is acceptable to return simply 0 or 1
where 0 means the port is busy and 1 means the port is ready to output a
character.

Function 0x04 – Character IO Initialization (CIOINIT)

Entry Parameters
B: 0x04
C: Serial Device Unit Number
DE: Line Characteristics

Exit Results
A: Status (0=OK, else error)

Setup line characteristics (baudrate, framing, etc.) of the specified unit.
Register pair DE specifies line characteristics. If DE contains -1 (0xFFFF),
then the device will be reinitialized with the last line characteristics used.
Result of function is returned in A with zero indicating success.

Function 0x05 – Character IO Query (CIOQUERY)

Entry Parameters
B: 0x05
C: Serial Device Unit Number

Exit Results
A: Status (0=OK, else error)

RetroBrew Computing Group 20

Section 8. HBIOS Reference RomWBW Architecture

DE: Line Characteristics

Reports the line characteristics (baudrate, framing, etc.) of the specified unit.
Register pair DE contains the line characteristics upon return.

Function 0x06 – Character IO Device (CIODEVICE)

Entry Parameters
B: 0x06
C: Serial Device Unit Number

Exit Results
A: Status (0=OK, else error)
C: Serial Device Attributes
D: Serial Device Type
E: Serial Device Number

Reports information about the character device unit specified. Register
C indicates the device attributes: 0=RS-232 and 1=Terminal. Register D
indicates the device type (driver) and register E indicates the physical device
number assigned by the driver.

Each character device is handled by an appropriate driver (UART, ASCI, etc.).
The driver can be identified by the Device Type. The assigned Device Types
are listed below.

Id Device Type / Driver

0x00 UART
0x10 ASCI
0x20 Terminal
0x30 PropIO VGA
0x40 ParPortProp VGA
0x50 SIO
0x60 ACIA
0x70 PIO

RetroBrew Computing Group 21

Section 8. HBIOS Reference RomWBW Architecture

Id Device Type / Driver

0x80 UF

RetroBrew Computing Group 22

Section 8. HBIOS Reference RomWBW Architecture

8.3 Disk Input/Output (DIO)

Character input/output functions require that a character unit be specified in
the C register. This is the logical disk unit number assigned during the boot
process that identifies all disk i/o devices uniquely.

A fixed set of media types are defined. The currently defined media types are
listed below. Each driver will support a subset of the defined media types.

Media ID Value Format

MID_NONE 0 No media installed
MID_MDROM 1 ROM Drive
MID_MDRAM 2 RAM Drive
MID_RF 3 RAM Floppy (LBA)
MID_HD 4 Hard Disk (LBA)
MID_FD720 5 3.5" 720K Floppy
MID_FD144 6 3.5" 1.44M Floppy
MID_FD360 7 5.25" 360K Floppy
MID_FD120 8 5.25" 1.2M Floppy
MID_FD111 9 8" 1.11M Floppy

Function 0x10 – Disk Status (DIOSTATUS)

Entry Parameters
B: 0x10

Exit Results
A: Status (0=OK, else error)

Function 0x11 – Disk Status (DIORESET)

Entry Parameters
B: 0x11

RetroBrew Computing Group 23

Section 8. HBIOS Reference RomWBW Architecture

C: Disk Device Unit ID

Exit Results
A: Status (0=OK, else error)

Reset the physical interface associated with the specified unit. Flag all units
associated with the interface for unit initialization at next I/O call. Clear media
identified unless locked. Reset result code of all associated units of the
physical interface.

Function 0x12 – Disk Seek (DIOSEEK)

Entry Parameters
B: 0x12
C: Disk Device Unit ID
D7: Address Type (0=CHS, 1=LBA)

if CHS:
D6-0: Head
E: Sector
HL: Track

if LBA:
DE:HL: Block Address

Exit Results
A: Status (0=OK, else error)

Update target CHS or LBA for next I/O request on designated unit. Physical
seek is typically deferred until subsequent I/O operation.

Bit 7 of D indicates whether the disk seek address is specified as cylin-
der/head/sector (CHS) or Logical Block Address (LBA). If D:7=1, then the
remaining bits of of the 32 bit register set DE:HL specify a linear, zero offset,
block number. If D:7=0, then the remaining bits of D specify the head, E
specifies sector, and HL specifies track.

RetroBrew Computing Group 24

Section 8. HBIOS Reference RomWBW Architecture

Note that not all devices will accept both types of addresses. Specifically,
floppy disk devices must have CHS addresses. All other devices will accept
either CHS or LBA. The DIOGEOM function can be used to determine if the
device supports LBA addressing.

Function 0x13 – Disk Read (DIOREAD)

Entry Parameters
B: 0x13
C: Disk Device Unit ID
E: Block Count
HL: Buffer Address

Exit Results
A: Status (0=OK, else error)
E: Blocks Read

Read Block Count sectors to buffer address starting at current target sector.
Current sector must be established by prior seek function; however, multiple
read/write/verify function calls can be made after a seek function. Current
sector is incremented after each sector successfully read. On error, current
sector is sector is sector where error occurred. Blocks read indicates number
of sectors successfully read.

Caller must ensure: 1) buffer address is large enough to contain data for all
sectors requested, and 2) entire buffer area resides in upper 32K of memory.

Function 0x14 – Disk Write (DIOWRITE)

Entry Parameters
B: 0x14
C: Disk Device Unit ID
E: Block Count
HL: Buffer Address

RetroBrew Computing Group 25

Section 8. HBIOS Reference RomWBW Architecture

Exit Results
A: Status (0=OK, else error)
E: Blocks Written

Write Block Count sectors to buffer address starting at current target sector.
Current sector must be established by prior seek function; however, multiple
read/write/verify function calls can be made after a seek function. Current
sector is incremented after each sector successfully written. On error, current
sector is sector is sector where error occurred. Blocks written indicates
number of sectors successfully written.

Caller must ensure: 1) buffer address is large enough to contain data for
all sectors being written, and 2) entire buffer area resides in upper 32K of
memory.

Function 0x15 – Disk Verify (DIOVERIFY)

Entry Parameters
B: 0x15
C: Disk Device Unit ID
HL: Buffer Address
E: Block Count

Exit Results
A: Status (0=OK, else error)
E: Blocks Verified

Not Implemented

Function 0x16 – Disk Format (DIOFORMAT)

Entry Parameters
B: 0x16
C: Disk Device Unit ID

RetroBrew Computing Group 26

Section 8. HBIOS Reference RomWBW Architecture

D: Head
E: Fill Byte
HL: Cylinder

Exit Results
A: Status (0=OK, else error)

Not Implemented

Function 0x17 – Disk DEVICE (DIODEVICE)

Entry Parameters
B: 0x17
C: Disk Device Unit ID

Exit Results
A: Status (0=OK, else error)
C: Attributes
D: Device Type
E: Device Number

Reports information about the character device unit specified. Register D
indicates the device type (driver) and register E indicates the physical device
number assigned by the driver.

Register C reports the following device attributes:

Bit 7: 1=Floppy, 0=Hard Disk (or similar, e.g. CF, SD, RAM)

If Floppy:
Bits 6-5: Form Factor (0=8“, 1=5.25”, 2=3.5", 3=Other)
Bit 4: Sides (0=SS, 1=DS)
Bits 3-2: Density (0=SD, 1=DD, 2=HD, 3=ED)
Bits 1-0: Reserved

If Hard Disk:
Bit 6: Removable\

RetroBrew Computing Group 27

Section 8. HBIOS Reference RomWBW Architecture

Bits: 5-3: Type (0=Hard, 1=CF, 2=SD, 3=USB,
4=ROM, 5=RAM, 6=RAMF, 7=Reserved)

Bits 2-0: Reserved

Each disk device is handled by an appropriate driver (IDE, SD, etc.) which is
identified by a device type id from the table below.

Type ID Disk Device Type

0x00 Memory Disk
0x10 Floppy Disk
0x20 RAM Floppy
0x30 IDE Disk
0x40 ATAPI Disk (not implemented)
0x50 PPIDE Disk
0x60 SD Card
0x70 PropIO SD Card
0x80 ParPortProp SD Card
0x90 SIMH HDSK Disk

Function 0x18 – Disk Media (DIOMEDIA)

Entry Parameters
B: 0x18
C: Disk Device Unit ID
E0: Enable Media Discovery

Exit Results
A: Status (0=OK, else error)
E: Media ID

Report the media definition for media in specified unit. If bit 0 of E is set,
then perform media discovery or verification. If no media in device, function
will return an error status.

RetroBrew Computing Group 28

Section 8. HBIOS Reference RomWBW Architecture

Function 0x19 – Disk Define Media (DIODEFMED)

Entry Parameters
B: 0x19
C: Disk Device Unit ID
E: Media ID

Exit Results
A: Status (0=OK, else error)

*** Not implemented ***

Function 0x1A – Disk Capacity (DIOCAPACITY)

Entry Parameters
B: 0x1A
C: Disk Device Unit ID
HL: Buffer Address

Exit Results
A: Status (0=OK, else error)
DE:HL: Blocks on Device
BC: Block Size

Report current media capacity information. DE:HL is a 32 bit number repre-
senting the total number of blocks on the device. BC contains the block size.
If media is unknown, an error will be returned.

Function 0x1B – Disk Geometry (DIOGEOMETRY)

Entry Parameters
B: 0x1B
C: Disk Device Unit ID

Exit Results
A: Status (0=OK, else error)

RetroBrew Computing Group 29

Section 8. HBIOS Reference RomWBW Architecture

HL: Cylinders
D7: LBA Capability
BC: Block Size

Report current media geometry information. If media is unknown, return
error (no media).

RetroBrew Computing Group 30

Section 8. HBIOS Reference RomWBW Architecture

8.4 Real Time Clock (RTC)

The Real Time Clock functions provide read/write access to the clock and
related Non-Volatile RAM.

The time functions (RTCGTM and RTCSTM) require a 6 byte date/time buffer
of the following format. Each byte is BCD encoded.

Offset Contents

0 Year (00-99)
1 Month (01-12)
2 Date (01-31)
3 Hours (00-24)
4 Minutes (00-59)
5 Seconds (00-59)

Function 0x20 – RTC Get Time (RTCGETTIM)

Entry Parameters
B: 0x20
HL: Time Buffer Address

Exit Results
A: Status (0=OK, else error)

Read the current value of the clock and store the date/time in the buffer
pointed to by HL.

Function 0x21 – RTC Set Time (RTCSETTIM)

Entry Parameters
B: 0x21
HL: Time Buffer Address

RetroBrew Computing Group 31

Section 8. HBIOS Reference RomWBW Architecture

Exit Results
A: Status (0=OK, else error)

Set the current value of the clock based on the date/time in the buffer pointed
to by HL.

Function 0x22 – RTC Get NVRAM Byte (RTCGETBYT)

Entry Parameters
B: 0x22
C: Index

Exit Results
A: Status (0=OK, else error)
E: Value

Read a single byte value from the Non-Volatile RAM at the index specified
by C. The value is returned in register E.

Function 0x23 – RTC Set NVRAM Byte (RTCSETBYT)

Entry Parameters
B: 0x23
C: Index

Exit Results
A: Status (0=OK, else error)
E: Value

Write a single byte value into the Non-Volatile RAM at the index specified by
C. The value to be written is specified in E.

RetroBrew Computing Group 32

Section 8. HBIOS Reference RomWBW Architecture

Function 0x24 – RTC Get NVRAM Block (RTCGETBLK)

Entry Parameters
B: 0x24
HL: Buffer

Exit Results
A: Status (0=OK, else error)

Read the entire contents of the Non-Volatile RAM into the buffer pointed to
by HL. HL must point to a location in the top 32K of CPU address space.

Function 0x25 – RTC Set NVRAM Block (RTCSETBLK)

Entry Parameters
B: 0x25
HL: Buffer

Exit Results
A: Status (0=OK, else error)

Write the entire contents of the Non-Volatile RAM from the buffer pointed to
by HL. HL must point to a location in the top 32K of CPU address space.

RetroBrew Computing Group 33

Section 8. HBIOS Reference RomWBW Architecture

8.5 Video Display Adapter (VDA)

The VDA functions are provided as a common interface to Video Display
Adapters. Not all VDAs will include keyboard hardware. In this case, the
keyboard functions should return a failure status.

Depending on the capabilities of the hardware, the use of colors and at-
tributes may or may not be supported. If the hardware does not support
these capabilities, they will be ignored.

Color byte values are constructed using typical RGBI (Red/Green/Blue/Intensity)
bits. The high four bits of the value determine the background color and the
low four bits determine the foreground color. This results in 16 unique color
values for both foreground and background. The following table illustrates
the color byte value construction:

Bit Color

Background 7 Intensity
6 Blue
5 Green
4 Red

Foreground 3 Intensity
2 Blue
1 Green
0 Red

The following table illustrates the resultant color for each of the possible 16
values for foreground or background:

Foreground Background Color

_0 ____0000 0_ 0000____ Black
_1 ____0001 1_ 0001____ Red
_2 ____0010 2_ 0010____ Green

RetroBrew Computing Group 34

Section 8. HBIOS Reference RomWBW Architecture

Foreground Background Color

_3 ____0011 3_ 0011____ Brown
_4 ____0100 4_ 0100____ Blue
_5 ____0101 5_ 0101____ Magenta
_6 ____0110 6_ 0110____ Cyan
_7 ____0111 7_ 0111____ White
_8 ____1000 8_ 1000____ Gray
_9 ____1001 9_ 1001____ Light Red
_A ____1010 A_ 1010____ Light Green
_B ____1011 B_ 1011____ Yellow
_C ____1100 C_ 1100____ Light Blue
_D ____1101 D_ 1101____ Light Magenta
_E ____1110 E_ 1110____ Light Cyan
_F ____1111 F_ 1111____ Bright White

Attribute byte values are constructed using the following bit encoding:

Bit Effect

7 n/a (0)
6 n/a (0)
5 n/a (0)
4 n/a (0)
3 n/a (0)
2 Reverse
1 Underline
0 Blink

The following codes are returned by a keyboard read to signify non-ASCII
keystrokes:

RetroBrew Computing Group 35

Section 8. HBIOS Reference RomWBW Architecture

Value Keystroke Value Keystroke

0xE0 F1 0xF0 Insert
0xE1 F2 0xF1 Delete
0xE2 F3 0xF2 Home
0xE3 F4 0xF3 End
0xE4 F5 0xF4 PageUp
0xE5 F6 0xF5 PadeDown
0xE6 F7 0xF6 UpArrow
0xE7 F8 0xF7 DownArrow
0xE8 F9 0xF8 LeftArrow
0xE9 F10 0xF9 RightArrow
0xEA F11 0xFA Power
0xEB F12 0xFB Sleep
0xEC SysReq 0xFC Wake
0xED PrintScreen 0xFD Break
0xEE Pause 0xFE
0xEF App 0xFF

Function 0x40 – Video Initialize (VDAINI)

Entry Parameters
B: 0x40
C: Video Device Unit ID
E: Video Mode (device specific)
HL: Font Bitmap Buffer Address (optional)

Exit Results
A: Status (0=OK, else error)

Performs a full (re)initialization of the specified video device. The screen is
cleared and the keyboard buffer is flushed. If the specified VDA supports
multiple video modes, the requested mode can be specified in E (set to 0 for

RetroBrew Computing Group 36

Section 8. HBIOS Reference RomWBW Architecture

default/not specified). Mode values are specific to each VDA.

HL may point to a location in memory with the character bitmap to be loaded
into the VDA video processor. The location MUST be in the top 32K of
the CPU memory space. HL must be set to zero if no character bitmap is
specified (the VDA video processor will utilize a default character bitmap).

Function 0x41 – Video Query (VDAQRY)

Entry Parameters
B: 0x41
C: Video Device Unit ID
HL: Font Bitmap Buffer Address (optional)

Exit Results
A: Status (0=OK, else error)
C: Video Mode
D: Row Count
E: Column Count
HL: Font Bitmap Buffer Address (0 if N/A)

Return information about the specified video device. C will be set to the
current video mode. DE will return the dimensions of the video display as
measured in rows and columns. Note that this is the count of rows and
columns, not the last row/column number.

If HL is not zero, it must point to a suitably sized memory buffer in the upper
32K of CPU address space that will be filled with the current character bitmap
data. It is critical that HL be set to zero if it does not point to a proper buffer
area or memory corruption will result. The video device driver may not have
the ability to provide character bitmap data. In this case, on return, HL will
be set to zero.

RetroBrew Computing Group 37

Section 8. HBIOS Reference RomWBW Architecture

Function 0x42 – Video Reset (VDARES)

Entry Parameters
B: 0x42
C: Video Device Unit ID

Exit Results
A: Status (0=OK, else error)

Performs a soft reset of the Video Display Adapter. Should clear the screen,
home the cursor, restore active attribute and color to defaults. Keyboard
should be flushed.

Function 0x43 – Video Device (VDADEV)

Entry Parameters
B: 0x43
C: Video Device Unit ID

Exit Results
A: Status (0=OK, else error)
D=Device Type
E=Device Number

Reports information about the video device unit specified.

Register D reports the video device type (see below).

Register E reports the driver relative physical device number.

The currently defined video device types are:

VDA ID Value Device

VDA_NONE 0x00 No VDA
VDA_VDU 0x10 ECB VDU board
VDA_CVDU 0x20 ECB Color VDU board
VDA_7220 0x30 ECB uPD7220 video display board

RetroBrew Computing Group 38

Section 8. HBIOS Reference RomWBW Architecture

VDA ID Value Device

VDA_N8 0x40 TMS9918 video display built-in to N8
VDA_VGA 0x50 ECB VGA board

Function 0x44 – Video Set Cursor Style (VDASCS)

Entry Parameters
B: 0x44
C: Video Device Unit ID
D: Start/End Pixel Row
E: Style

Exit Results
A: Status (0=OK, else error)

If supported by the video hardware, adjust the format of the cursor such that
the cursor starts at the pixel specified in the top nibble of D and end at the
pixel specified in the bottom nibble of D. So, if D=$08, a block cursor would
be used that starts at the top pixel of the character cell and ends at the ninth
pixel of the character cell.

Register E is reserved to control the style of the cursor (blink, visibility, etc.),
but is not yet implemented.

Adjustments to the cursor style may or may not be possible for any given
video hardware.

Function 0x45 – Video Set Cursor Position (VDASCP)

Entry Parameters
B: 0x45
C: Video Device Unit ID
D: Row (0 indexed)

RetroBrew Computing Group 39

Section 8. HBIOS Reference RomWBW Architecture

E: Column (0 indexed)

Exit Results
A: Status (0=OK, else error)

Reposition the cursor to the specified row and column. Specifying a
row/column that exceeds the boundaries of the display results in undefined
behavior. Cursor coordinates are 0 based (0,0 is the upper left corner of the
display).

Function 0x46 – Video Set Character Attribute (VDASAT)

Entry Parameters
B: 0x46
C: Video Device Unit ID
E: Character Attribute Code

Exit Results
A: Status (0=OK, else error)

Assign the specified character attribute code to be used for all subsequent
character writes/fills. This attribute is used to fill new lines generated by
scroll operations. Refer to the character attribute for a list of the available
attribute codes. Note that a given video display may or may not support
any/all attributes.

Function 0x47 – Video Set Character Color (VDASCO)

Entry Parameters
B: 0x47
C: Video Device Unit ID
E: Character Color Code

Exit Results
A: Status (0=OK, else error)

RetroBrew Computing Group 40

Section 8. HBIOS Reference RomWBW Architecture

Assign the specified color code to be used for all subsequent character
writes/fills. This color is also used to fill new lines generated by scroll
operations. Refer to color code table for a list of the available color codes.
Note that a given video display may or may not support any/all colors.

Function 0x48 – Video Set Write Character (VDAWRC)

Entry Parameters
B: 0x48
C: Video Device Unit ID
E: Character

Exit Results
A: Status (0=OK, else error)

Write the character specified in E. The character is written starting at the
current cursor position and the cursor is advanced. If the end of the line is
encountered, the cursor will be advanced to the start of the next line. The
display will not scroll if the end of the screen is exceeded.

Function 0x49 – Video Fill (VDAFIL)

Entry Parameters
B: 0x49
C: Video Device Unit ID
E: Character
HL: Count

Exit Results
A: Status (0=OK, else error)

Write the character specified in E to the display the number of times specified
in HL. Characters are written starting at the current cursor position and the
cursor is advanced by the number of characters written. If the end of the

RetroBrew Computing Group 41

Section 8. HBIOS Reference RomWBW Architecture

line is encountered, the characters will continue to be written starting at the
next line as needed. The display will not scroll if the end of the screen is
exceeded.

Function 0x4A – Video Copy (VDACPY)

Entry Parameters
B: 0x4A
C: Video Device Unit ID
D: Source Row
E: Source Column
L: Count

Exit Results
A: Status (0=OK, else error)

Copy count (L) bytes from the source row/column (DE) to current cursor
position. The cursor position is not updated. The maximum count is 255.
Copying to/from overlapping areas is not supported and will have an unde-
fined behavior. The display will not scroll if the end of the screen is exceeded.
Copying beyond the active screen buffer area is not supported and results in
undefined behavior.

Function 0x4B – Video Scroll (VDASCR)

Entry Parameters
B: 0x4B
C: Video Device Unit ID
E: Scroll Distance (Line Count)

Exit Results
A: Status (0=OK, else error)

Scroll the video display by the number of lines specified in E. If E contains a
negative number, then reverse scroll should be performed.

RetroBrew Computing Group 42

Section 8. HBIOS Reference RomWBW Architecture

Function 0x4C – Video Keyboard Status (VDAKST)

Entry Parameters
B: 0x4C
C: Video Device Unit ID

Exit Results
A:Count of Key Codes in Keyboard Buffer

Return a count of the number of key codes in the keyboard buffer. If it is
not possible to determine the actual number in the buffer, it is acceptable to
return 1 to indicate there are key codes available to read and 0 if there are
none available.

Function 0x4D – Video Keyboard Flush (VDAKFL)

Entry Parameters
B: 0x4D
C: Video Device Unit ID

Exit Results
A: Status (0=OK, else error)

If a keyboard buffer is in use, it should be purged and all contents discarded.

Function 0x4E – Video Keyboard Read (VDAKRD)

Entry Parameters
B: 0x4E
C: Video Device Unit ID

Exit Results
A: Status (0=OK, else error)
C: Scancode
D: Keystate
E: Keycode

RetroBrew Computing Group 43

Section 8. HBIOS Reference RomWBW Architecture

Read next key code from keyboard. If a keyboard buffer is used, return the
next key code in the buffer. If no key codes are available, wait for a keypress
and return the keycode.

The scancode value is the raw scancode from the keyboard for the keypress.
Scancodes are from scancode set 2 standard.

The keystate is a bitmap representing the value of all modifier keys and shift
states as they existed at the time of the keystroke. The bitmap is defined as:

Bit Keystate Indication

7 Key pressed was from the num pad
6 Caps Lock was active
5 Num Lock was active
4 Scroll Lock was active
3 Windows key was held down
2 Alt key was held down
1 Control key was held down
0 Shift key was held down

Keycodes are generally returned as appropriate ASCII values, if possible.
Special keys, like function keys, are returned as reserved codes as described
at the start of this section.

RetroBrew Computing Group 44

Section 8. HBIOS Reference RomWBW Architecture

8.6 System (SYS)

Function 0xF0 – System Reset (SYSRESET)

Entry Parameters
B: 0xF0

Exit Results
A: Status (0=OK, else error)

Perform a soft reset of HBIOS. Releases all HBIOS memory allocated by
current OS. Does not reinitialize physical devices.

Function 0xF1 – System Version (SYSVER)

Entry Parameters
B: 0xF1
C: Reserved (set to 0)

Exit Results
A: Status (0=OK, else error)
DE: Version (Maj/Min/Upd/Pat)
L: Platform ID

This function will return the HBIOS version number. The version number is
returned in DE. High nibble of D is the major version, low nibble of D is the
minor version, high nibble of E is the patch number, and low nibble of E is
the build number.

The hardware platform is identified in L:

Id Platform

1 SBC V1 or V2
2 Zeta
3 Zeta V2

RetroBrew Computing Group 45

Section 8. HBIOS Reference RomWBW Architecture

Id Platform

4 N8
5 Mark IV
6 UNA
7 RC2014 w/ Z80
8 RC2014 w/ Z180 & banked memory module
9 RC2014 w/ Z180 & linear memory module
10 SCZ180 (SC126, SC130, SC131)
11 Dyno

Function 0xF2 – System Set Bank (SYSSETBNK)

Entry Parameters
B: 0xF2
C: Bank ID

Exit Results
A: Status (0=OK, else error)
C: Previously Active Bank ID

Activates the Bank ID specified in C and returns the previously active Bank
ID in C. The caller MUST be invoked from code located in the upper 32K and
the stack must be in the upper 32K.

Function 0xF3 – System Get Bank (SYSGETBNK)

Entry Parameters
B: 0xF3

Exit Results
A: Status (0=OK, else error)
C: Active Bank ID

RetroBrew Computing Group 46

Section 8. HBIOS Reference RomWBW Architecture

Returns the currently active Bank ID in C.

Function 0xF4 – System Set Copy (SYSSETCPY)

Entry Parameters
B: 0xF4
D: Destination Bank ID
E: Source Bank ID
HL: Count of Bytes to Copy

Exit Results
A: Status (0=OK, else error)

Prepare for a subsequent interbank memory copy (SYSBNKCPY) function
by setting the source bank, destination bank, and byte count for the copy.
The bank id’s are not range checked and must be valid for the system in use.

No bytes are copied by this function. The SYSBNKCPY must be called
to actually perform the copy. The values setup by this function will remain
unchanged until another call is make to this function. So, after calling
SYSSETCPY, you may make multiple calls to SYSBNKCPY as long as you
want to continue to copy between the already established Source/Destination
Banks and the same size copy if being performed.

Function 0xF5 – System Bank Copy (SYSBNKCPY)

Entry Parameters
B: 0xF5
DE: Destination Address
HL: Source Address

Exit Results
A: Status (0=OK, else error)

Copy memory between banks. The source bank, destination bank, and

RetroBrew Computing Group 47

Section 8. HBIOS Reference RomWBW Architecture

byte count to copy MUST be established with a prior call to SYSSETCPY.
However, it is not necessary to call SYSSETCPY prior to subsequent calls to
SYSBNKCPY if the source/destination banks and copy length do not change.

WARNINGS:

• This function is inherently dangerous and does not prevent you from
corrupting critical areas of memory. Use with extreme caution.

• Overlapping source and destination memory ranges are not supported
and will result in undetermined behavior.

• Copying of byte ranges that cross bank boundaries is undefined.

Function 0xF6 – System Alloc (SYSALLOC)

Entry Parameters
B: 0xF6
HL: Size in Bytes

Exit Results
A: Status (0=OK, else error)
HL: Address of Allocated Memory

This function will attempt to allocate a block of memory of HL bytes from the
internal HBIOS heap. The HBIOS heap resides in the HBIOS bank in the
area of memory left unused by HBIOS. If the allocation is successful, the
address of the allocated memory block is returned in HL. You will typically
want to use the SYSBNKCPY function to read/write the allocated memory.

Function 0xF7 – System Free (SYSFREE)

Entry Parameters
B: 0xF7
HL: Address of Memory Block to Free

RetroBrew Computing Group 48

Section 8. HBIOS Reference RomWBW Architecture

Returned Values
A: Status (0=OK, else error)

*** This function is not yet implemented ***

Function 0xF8 – System Get (SYSGET)

Entry Parameters
B: 0xF8
C: Subfunction (see below)

Returned Values
A: Status (0=OK, else error)

This function will report various system information based on the sub-function
value. The following lists the subfunctions available along with the regis-
ters/information returned.

SYSGET Subfunction 0x00 – Get Serial Device Unit Count (CIOCNT)

Entry Parameters
BC: 0xF800

Returned Values
A: Status (0=OK, else error)
E: Count of Serial Device Units

SYSGET Subfunction 0x10 – Get Disk Device Unit Count (DIOCNT)

Entry Parameters
BC: 0xF810

Returned Values
A: Status (0=OK, else error)
E: Count of Disk Device Units

RetroBrew Computing Group 49

Section 8. HBIOS Reference RomWBW Architecture

SYSGET Subfunction 0x40 – Get Video Device Unit Count (VDACNT)

Entry Parameters
BC: 0xF840

Returned Values
A: Status (0=OK, else error)
E: Count of Video Device Units

SYSGET Subfunction 0xD0 – Get Timer Tick Count (TIMER)

Entry Parameters
BC: 0xF8D0

Returned Values
A: Status (0=OK, else error)
DE:HL: Current Timer Tick Count Value

SYSGET Subfunction 0xD1 – Get Seconds Count (SECONDS)

Entry Parameters
BC: 0xF8D1

Returned Values
A: Status (0=OK, else error)
DE:HL: Current Seconds Count Value
C: Ticks within Second Value

SYSGET Subfunction 0xE0 – Get Boot Information (BOOTINFO)

Entry Parameters
BC: 0xF8E0

Returned Values
A: Status (0=OK, else error)
L: Boot Bank ID

RetroBrew Computing Group 50

Section 8. HBIOS Reference RomWBW Architecture

D: Boot Disk Device Unit ID
E: Boot Disk Slice

SYSGET Subfunction 0xF0 – Get CPU Information (CPUINFO)

Entry Parameters
BC: 0xF8F0

Returned Values
A: Status (0=OK, else error)
H: Z80 CPU Variant
L: CPU Speed in MHz
DE: CPU Speed in KHz

SYSGET Subfunction 0xF1 – Get Memory Information (MEMINFO)

Entry Parameters
BC: 0xF8F1

Returned Values
A: Status (0=OK, else error)
D: Count of 32K ROM Banks
E: Count of 32K RAM Banks

SYSGET Subfunction 0xF2 – Get Bank Information (BNKINFO)

Entry Parameters
BC: 0xF8F2

Returned Values
A: Status (0=OK, else error)
D: BIOS Bank ID
E: User Bank ID

RetroBrew Computing Group 51

Section 8. HBIOS Reference RomWBW Architecture

Function 0xF9 – System Set (SYSSET)

Entry Parameters
B: 0xF9
C: Subfunction (see below)

Returned Values
A: Status (0=OK, else error)

This function will set various system parameters based on the sub-function
value. The following lists the subfunctions available along with the regis-
ters/information used as input.

SYSSET Subfunction 0xD0 – Set Timer Tick Count (TIMER)

Entry Parameters
BC: 0xF9D0
DE:HL: Timer Tick Count Value

Returned Values
A: Status (0=OK, else error)

SYSSET Subfunction 0xD1 – Set Seconds Count (SECONDS)

Entry Parameters
BC: 0xF9D1
DE:HL: Seconds Count Value

Returned Values
A: Status (0=OK, else error)

SYSSET Subfunction 0xE0 – Set Boot Information (BOOTINFO)

Entry Parameters
BC: 0xF9E0
L: Boot Bank ID

RetroBrew Computing Group 52

Section 8. HBIOS Reference RomWBW Architecture

D: Boot Disk Device Unit ID
E: Boot Disk Slice

Returned Values
A: Status (0=OK, else error)

Function 0xFA – System Peek (SYSPEEK)

Entry Parameters
B: 0xFA
D: Bank ID
HL: Memory Address

Returned Values
A: Status (0=OK, else error)
E: Byte Value

This function gets a single byte value at the specified bank/address. The
bank specified is not range checked.

Function 0xFB – System Poke (SYSPOKE)

Entry Parameters
B: 0xFB
D: Bank ID
E: Value
HL: Memory Address

Returned Values
A: Status (0=OK, else error)

This function sets a single byte value at the specified bank/address. The
bank specified is not range checked.

RetroBrew Computing Group 53

Section 8. HBIOS Reference RomWBW Architecture

Function 0xFC – System Interrupt Management (SYSINT)

Entry Parameters
B: 0xFC
C: Subfunction (see below)

Returned Values
A: Status (0=OK, else error)

This function allows the caller to query information about the interrupt config-
uration of the running system and allows adding or hooking interrupt handlers
dynamically. Register C is used to specify a subfunction. Additional input
and output registers may be used as defined by the sub-function.

Note that during interrupt processing, the lower 32K of CPU address space
will contain the RomWBW HBIOS code bank, not the lower 32K of application
TPA. As such, a dynamically installed interrupt handler does not have access
to the lower 32K of TPA and must be careful to avoid modifying the contents
of the lower 32K of memory. Invoking RomWBW HBIOS functions within an
interrupt handler is not supported.

Interrupt handlers are different for IM1 or IM2.

For IM1:

The new interrupt handler is responsible for chaining (JP) to the
previous vector if the interrupt is not handled. If the interrupt is
handled, the new handler may simply return (RET). When chain-
ing to the previous interrupt handler, ZF must be set if interrupt
is handled and ZF cleared if not handled. The interrupt man-
agement framework takes care of saving and restoring AF, BC,
DE, HL, and IY. Any other registers modified must be saved and
restored by the interrupt handler.

For IM2:

The new interrupt handler may either replace or hook the previous

RetroBrew Computing Group 54

Section 8. HBIOS Reference RomWBW Architecture

interrupt handler. To replace the previous interrupt handler, the
new handler just returns (RET) when done. To hook the previous
handler, the new handler can chain (JP) to the previous vector.
Note that initially all IM2 interrupt vectors are set to be handled as
“BAD” meaning that the interrupt is unexpected. In most cases,
you do not want to chain to the previous vector because it will
cause the interrupt to display a “BAD INT” system panic message.

The interrupt framework will take care of issuing an EI and RETI instruction.
Do not put these instructions in your new handler. Additionally, interrupt
management framework takes care of saving and restoring AF, BC, DE, HL,
and IY. Any other registers modified must be saved and restored by the
interrupt handler.

If the caller is transient, then the caller must remove the new interrupt handler
and restore the original one prior to termination. This is accomplished
by calling this function with the Interrupt Vector set to the Previous Vector
returned in the original call.

The caller is responsible for disabling interrupts prior to making an INTSET
call and enabling them afterwards. The caller is responsible for ensuring
that a valid interrupt handler is installed prior to enabling any hardware
interrupts associated with the handler. Also, if the handler is transient, the
caller must disable the hardware interrupt(s) associated with the handler
prior to uninstalling it.

SYSINT Subfunction 0x00 – Interrupt Info (INTINF)

Entry Parameters
BC: 0xFC00

Returned Values
A: Status (0=OK, else error)
D: Interrupt Mode
E: Size (# entries) of Interrupt Vector Table

RetroBrew Computing Group 55

Section 8. HBIOS Reference RomWBW Architecture

Return interrupt mode in D and size of interrupt vector table in E. For IM1,
the size of the table is the number of vectors chained together. For IM2, the
size of the table is the number of slots in the vector table.

SYSINT Subfunction 0x10) – Get Interrupt (INTGET)

Entry Parameters
BC: 0xFC10
E: Interrupt Vector Table Index

Returned Values
A: Status (0=OK, else error)
HL: Current Interrupt Vector Address

On entry, register E must contain an index into the interrupt vector table.
On return, HL will contain the address of the current interrupt vector at the
specified index.

SYSINT Subfunction 0x20) – Set Interrupt (INTSET)

Entry Parameters
BC: 0xFC20
E: Interrupt Vector Table Index
HL: Interrupt Address to be Assigned

Returned Values
A: Status (0=OK, else error)
HL: Previous Interrupt Vector Address
DE: Interrupt Routing Engine Address (IM2)

On entry, register E must contain an index into the interrupt vector table
and register HL must contain the address of the new interrupt vector to be
inserted in the table at the index. On return, HL will contain the previous
address in the table at the index.

RetroBrew Computing Group 56

	Overview
	Background
	General Design Strategy
	Runtime Memory Layout
	System Boot Process
	ROM Boot
	Application Boot
	Notes

	Driver Model
	Character / Emulation / Video Services
	HBIOS Reference
	Invocation
	Character Input/Output (CIO)
	Disk Input/Output (DIO)
	Real Time Clock (RTC)
	Video Display Adapter (VDA)
	System (SYS)

