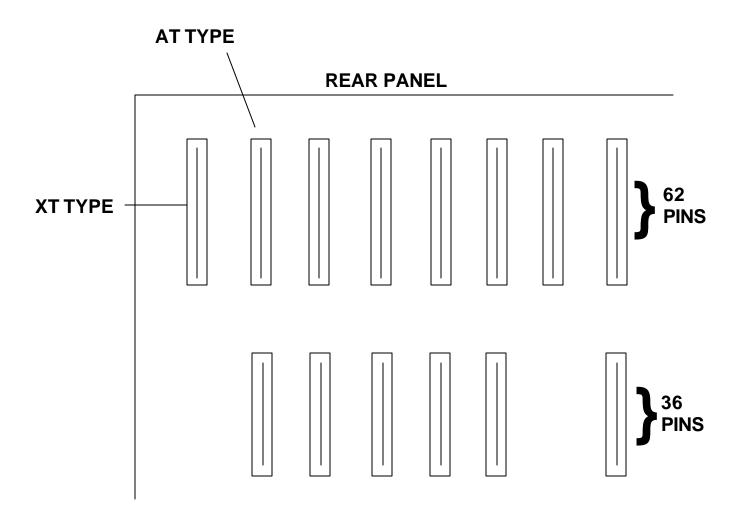
Chapter 12 ISA BUS PC Architecture for Technicians: Level-1

Systems Manufacturing Training and Employee Development Copyright © 1996 Intel Corp.

OBJECTIVES: At the end of this section, the student will be able to do the following:

- C Describe the background of the Industry Standard ISA Expansion Bus.
- C Describe Typical System Bus Cycles.
- © Explain the Functions of the Signals on the I/O Channel.
- C Discuss the ISA BUS Signal Descriptions.
- Describe 8-bit Memory & I/O ISA BUS Cycles.
- Conversion BUS Cycles.
- © Describe 16-bit Memory & I/O ISA BUS Cycles.

ISA BUS OVERVIEW

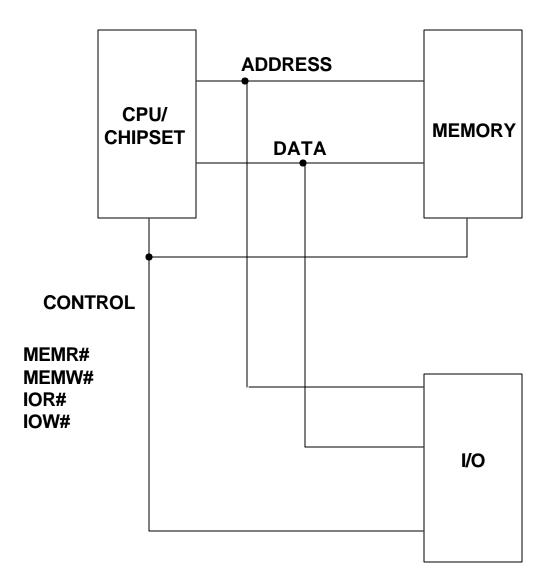

ISA BUS OVERVIEW

- This chapter presents an overview of the ISA bus.
- The I/O channel (defined by IBM) is an expansion bus permitting the installation of a wide variety of adapter cards.
- The ISA bus is an industry-wide attempt to standardize the original IBM I/O Channel.
 - IBM did not fully document the PC/AT I/O Channel.
 - The IEEE approved an AT bus specification in 1987 which defined what is know as the Industry Standard Architecture bus, or ISA bus for short.
- The function of each ISA bus signal is presented and timing diagrams illustrate various ISA bus transfers.

IBM PC/AT System Board

CURRENT ISA BUS STANDARD

- The I/O channel (8-bit) in the original PC and PC/XT consisted of several 62-pin connectors (slots).
- The ISA bus standard (IEEE P996) very closely matches the timing of the 8 MHz IBM PC/AT.
 - •SYSCLK is is still 8 MHz but is no longer necessarily related to the CPU clock.
 - ◆The CPU clock could be running at 25MHz, 33MHz, 50MHz, 60MHz, or 66MHz
 - SYSCLK is sometimes 8.33 MHz obtained from 25/3, etc.


TYPICAL SYSTEM BUS CYCLES

TYPICAL SYSTEM BUSES

TYPICAL SYSTEM BUSES

Recall that the typical microprocessor reads and writes to memory and I/O devices using the following three buses:

ADDRESS BUS

 The address bus supplies an address to the memory or I/O device.

C DATA BUS

- The data bus provides a bi-directional pathway for data flow. The data flow can be:
 - ◆ From the CPU to memory or I/O devices (WRITE).
 - ◆ From the memory or I/O devices to the CPU (READ).

TYPICAL SYSTEM BUSES

CONTROL BUS

 The control bus provides the control signals (commands) that tell the memory and I/O devices what type of cycle the CPU is running. Typical commands follow:

MEMR#

◆ CPU READ FROM MEMORY

MEMW#

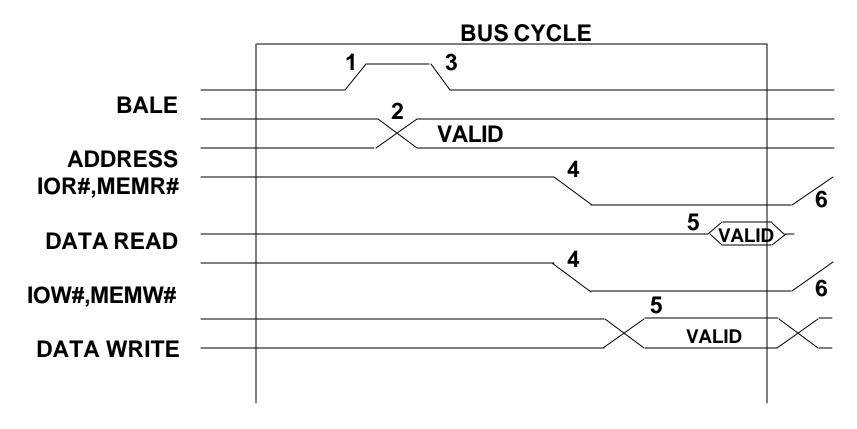
◆ CPU WRITE TO MEMORY

•IOR#

◆CPU READ FROM I/O DEVICE

•IOW#

◆CPU WRITE TO I/O DEVICE



Typical System Bus Cycle

The figure shows both a read and a write cycle. The timing of the bus signals in a typical bus cycle follows the steps on the next pages.

Ch 12 - Page 11

TYPICAL SYSTEM BUS CYCLE

CPU READ FROM MEMORY OR I/O DEVICE

- 1. BALE goes high, indicating the beginning of a bus cycle.
- 2. The ADDRESS bus becomes valid.
- 3. The ADDRESS bus is latched as BALE goes low.
- 4. The appropriate Command (MEMR#, IOR#) becomes active low.
- 5. The addressed memory or I/O device places the data on the DATA bus.
- 6. The cycle ends when the CPU samples the DATA bus as COMMAND goes inactive high.

TYPICAL SYSTEM BUS CYCLE

CPU WRITE TO MEMORY OR I/O DEVICE

- 1. BALE goes high, indicating the beginning of a bus cycle.
- 2. The ADDRESS bus becomes valid.
- 3. The ADDRESS bus is latched as BALE goes low.
- 4. The appropriate Command (MEMW#, IOW#) becomes active low.
- 5. The CPU places the data on the DATA bus.
- 6. The cycle ends when the CPU samples the DATA bus as COMMAND goes inactive high.

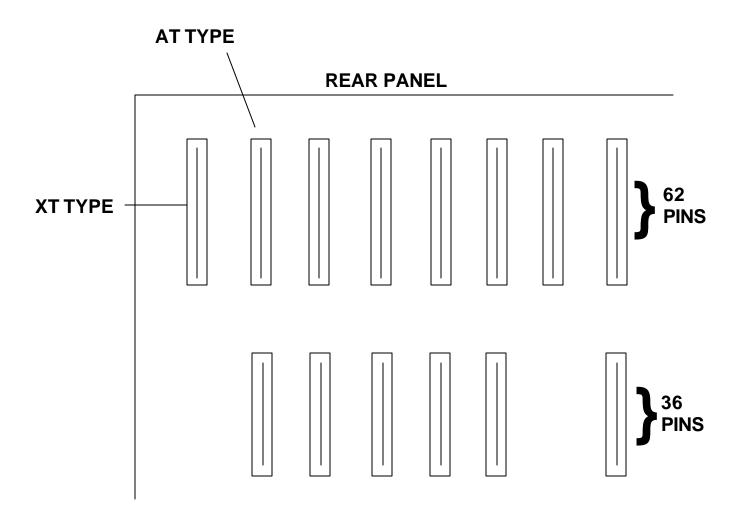
ISA BUS BACKGROUND

ISA BUS BACKGROUND

- The original PC 62-pin slot was not adequate for the PC/AT (80286 CPU) because of the need for the following:
 - •more address lines--24 instead of 20
 - more data lines--16 instead of 8
 - more interrupts--5 interrupts added
 - more DMA--4 new DMA channels
 - various lines supporting 16-bit access

ISA BUS BACKGROUND

COMPATIBILITY WITH THE PC: To permit the PC/AT to accommodate the PC type of adapter cards, the 62-pin slot was left almost unchanged.


- A 36-pin extension was added to the original 62 pins to provide for the extra needs listed above.
 - The 36-pin extension is in line with the 62 pins,
 - Giving the PC/AT adapter card a 98-pin connection.
 - Most PC/ATs provide a mix of the old and new slots.
- The original IBM PC/AT had the following:
 - •6 of the **98-pin slots (62+36)**
 - 2 of the 62-pin slots

IBM PC/AT System Board

ISA 8-bit Connector Signals

ISA Bus 8-bit Connector

GND	B01	A01	IOCHCK#
RSTDEV	B02	A02	SD7
+5V	B03	A03	SD6
IRQ9/(IRQ2)	B04	A04	SD5
-5V	B05	A05	SD4
DRQ2	B06	A06	SD3
-12V	B07	A07	SD2
SRDY# (NOWS#)	B08	A08	SD1
+12V	B09	A09	SD0
0V	B10	A10	IOCHRDY
SMEMW#	B11	A11	AEN
SMEMR#	B12	A12	SA1
IOR#	B13	A13	SA1
IOW#	B14	A14	8 A1
DACK3#	B15	A15	S A1
DRQ3	B16	A16	6 A1
DACK1#	B17	A17	SA1
DRQ1	B18	A18	\$ A1
REFRESH#	B19	A19	SA1
SYSCLK	B20	A20	S A1
IRQ7	B21	A21	\$ A1
IRQ6	B22	A22	6A
IRQ5	B23	A23	SA
IRQ4	B24	A24	8A
IRQ3	B25	A25	S A
DACK2#	B26	A26	6A
TC	B27	A27	SA
BALE	B28	A28	\$ A
+5V	B29	A29	3 A2
OSC	B30	A30	SA
GND	B31	A31	\$ A
			0

ISA 8-bit Connector Signals

The 62-Pin Portion of the ISA Bus Connector can be grouped into logical functions:

○ ADDRESS BUS (A19:0)

- These are OUTPUT ONLY signals used to address system-bus Memory & I/O
- With 20 address lines (like the PC/XT), the system can address up to 1 MByte of Memory.
- A19 is most significant bit, A0 is the least significant

○ DATA BUS (D7:0)

- These are Bi-directional data lines.
- There are eight data lines (like the PC/XT).
- D7 is most significant bit, D0 is the least significant.

- CONTROL--The control bus consist of:
 - Four command signals
 - √ SMEMR#, SMEMW#, IOR#, IOW#
 - & IOCHRDY (low to add wait states)
- The fundamental purpose of the control bus is to identify the type of transaction and provide synchronization between the fast processor & the external devices it is reading from or writing to.

- CONTROL (cont.)
 - SMEMR#, SMEMW#: System Memory Read/ Write Command
 - Indicates address bus contains a valid Memory Address.
 - Asserted for Memory Accesses below 1MB
 - IOR#, IOW#: Input/Output Read/Write (IORC#, IOWC#)
 - Indicates address bus contains a valid I/O Port Address.
 - •IOCHRDY: I/O Channel Ready (Active High)
 - ◆When IOCHRDY=1, the I/O Channel is READY.
 - Input only signal used to extend the ISA bus cycles for devices not fast enough to respond to normal cycles.
 - ◆ Pull Low to insert Wait States (I/O Channel NOT READY).

- INTERRUPTS--There are 6 interrupt request lines.
 - •Input only lines used to generate Interrupt Requests to the system board 8259A PIC #1.
 - Note that IRQ9 was labelled IRQ2 on the PC/XT. The IRQ9 vector, type 71H, is redirected to the IRQ2 type 0AH to provide compatibility with XT type boards.
 - The interrupts are rising edge triggered.

- DMA--There are three DMA channels.
 - Direct Memory Access Request/Acknowledge
 - **DRQ**1-3--active high requests (8 bit)
 - DACK1# DACK3#--active low acknowledge
 - •TC--high pulse. NOTE: There is only one TC signal:
 - The DMA system supports a terminal count (TC) signal which indicates that one of the DMA channels is done.
 - Each DMA channel is capable of making a maximum of 64K, 8-bit transfers between memory and I/O devices

ISA Conn. 62-Pin Portion: Logical Functions (cont.)

○ POWER:

- •+5V DC
 - Used to power the logic on adapter cards.
- •-5V DC- (Good signal to find pin B5 on ISA connector)
 - Very little used. Originally supplied power to 16K-bit DRAM chips on older PCs.
- •+12V DC-
 - Used primarily for disk power, also for RS232.
- •-12V DC
 - ◆ Used for RS232.
- •0V DC--GND (ground).

ISA Conn. 62-Pin Portion: Logical Functions (cont.)

CLOCKS

- SYSCLK--System Clock (CLK, BCLK)
 - ◆ This is typically 8 MHz.
 - It was originally the CPU clock on the PC/AT, first running at 6 MHz, then 8 MHz.
 - In modern PC's CLK will be about 8 MHz, not necessarily related to the CPU clock.
- •84OSC--Oscillator Output (OSC) 14.31818 MHz
 - It is still used for clocking the 8254 Timer in the PC/AT.
 » 14.3MHz/12 = 1.19 MHz
 - Source of the CPU clock in the original PC (4.77 MHz).

ISA Conn. 62-Pin Portion: Logical Functions (cont.)

ODDS AND ENDS

- •IOCHCK# -- I/O Channel Check (IOCHK#, CHCHK#)
 - This active low signal is to provide adapter cards with a method of indicating memory failure.
 - It actually connects through gates to NMI and so is really non-maskable interrupt, type 2.(Active low).
- RSTDEV -- Reset Device (RESET, RSTDRV)
 - ↑ This signal is active high during power-on to allow a reset of devices on adapter cards.

ISA Conn. 62-Pin Portion: Logical Functions (cont.)

ODDS AND ENDS

- BALE -- Bus Address Latch Enable (BUSALE, ALE)
 - Active high during the beginning of a bus cycle. Addresses are latched on the falling edge.
 - BUSALE is held high during DMA transfers.
- AEN -- Address enable.
 - A high indicates that the DMA system is in control of the bus
 - Used on the System Board to indicate that this is a NON CPU driven cycle.
 - » Disables address decoders on System Board.

- ODDS AND ENDS
 - SRDY# -- Synchronous Ready (OWS, NOWS)
 - ↑ This signal, Zero-Wait-State, allows adapter cards to eliminate wait states on 16-bit memory cycles
 - Minimize wait states to two on 8-bit memory cycles.
 - This signal is active low and should be driven by the adapter card with an open-collector output device.
 - ◆ This is not available for I/O cycles.

ISA Conn. 62-Pin Portion: Logical Functions (cont.)

ODDS AND ENDS

- •REFRESH# -- (MEMREF#)
 - An active low signal indicating that a memory refresh cycle is in progress by the System Board.
 - Note, this signal becomes an input signal when another master is in charge of the bus. The other master can force the system board to run a refresh cycle. Must be done every 15.6 microseconds.

ISA 16-bit Connector Signals

ISA 16-bit Connector Signals

The 36-Pin Portion of the ISA Bus Connector

- When the PC grew into the PC/AT, the need for more bus signals grew.
- The original PC 62-pin slot was not adequate for the PC/AT (80286 CPU) because of the need for the following:
 - More address lines -- 24 instead of 20
 - More data lines -- 16 instead of 8
 - More interrupts -- 5 interrupts added
 - More DMA -- 4 new DMA channels
 - Various lines supporting 16-bit accesses

ISA Bus 16-bit Connector

MCS16#	D01	C01	SBHE#
IOCS16#	D02	C02	LA23
IRQ10	D03	C03	LA22
IRQ11	D04	C04	LA21
IRQ12	D05	C05	LA20
IRQ15	D06	C06	LA19
IRQ14	D07	C07	LA18
DACK0#	D08	C08	LA17
DRQ0	D09	C09	MEMR#
DACK5#	D10	C10	MEMW#
DRQ5	D11	C11	SD8
DACK6#	D12	C12	SD9
DRQ6	D13	C13	SD10
DACK7#	D14	C14	SD11
DRQ7	D15	C15	SD12
+5V	D16	C16	SD13
MASTER16#	D17	C17	SD14
GND	D18	C18	SD15

The 36-Pin Portion of the ISA Bus Connector can be grouped into logical functions:

- ADDRESS BUS (LA17-LA23)
 - •These Large Addresses, unlike the A0-A19 signals on the 62-pin connector, are **valid slightly earlier** (as much as 70ns) and are **NOT LATCHED**.
 - They are typically used for address decoding.
 - Used to generate the MCS16# signal.
- DATA BUS (SD8-SD15): System Data (D15:8)
 - These are the extra eight data lines needed for 16-bit transfers.

- CONTROL BUS: MEMR#, MEMW# (MRDC#, MWTC#)
 - Memory Read/Write Command
 - Active for Memory Accesses from 0-16MB.
 - Unlike SMEMR# and SMEMW# on the 62-pin adapter which were active for addresses below 1MB, these signals are active for all memory addresses.
 - •8-bit agents only receive SMEMR# and SMEMW# due to connector limitations.

ISA Conn. 36-Pin Portion: Logical Functions (cont.)

CINTERRUPTS

- Five new interrupt requests are added.
- The slave 8259 has eight inputs, but three are used on the system board.
 - IRQ 8 -- Real-time clock chip (Alarm Output)
 - IRQ 9 -- Redirect to type 0AH (old IRQ 2)
 - ◆IRQ 13 -- Coprocessor error
 - The remaining five appear on the 36-pin connector.

ISA Conn. 36-Pin Portion: Logical Functions (cont.)

- ODMA (Direct Memory Access)
 - The added DMA controller (DMA #2) has only three channels available, since the fourth channel is used in cascade mode to handle requests from DMA1.
 - ◆ DRQ0, DACK0#--Channel 0 from DMA #1, 8 bit
 - » The DRQ4, DACK#4 lines used for cascade to the original DMA controller (DMA #1).
 - New channels, 16 bit
 - ◆ DRQ5-7 -- Direct Memory Access Request
 - ◆ DACK5#-DACK7# -- Direct Memory Access Acknowledge.

ISA Conn. 36-Pin Portion: Logical Functions (cont.)

- ODDS AND ENDS
 - POWER
 - +5V DC.
 - **♦ OV DC--GND.**
 - SBHE# (System Byte High Enable)
 - Asserted to indicate a transfer of data on the D15:8 Data lines (High Byte of D15:0 Word).
 - Used with A0 to decode the type of bus cycle.
 - » SBHE# = $\mathbf{0}$, A0 = 0 -> $\mathbf{16}$ BIT TRANSFER
 - » SBHE# = $\mathbf{0}$, A0 = 1 -> Upper Byte Transfer ($\mathbf{D15:8}$) Odd Addr
 - > SBHE# = 1, A0 = 0 -> Lower Byte Transfer (D7:0)

ISA Conn. 36-Pin Portion: Logical Functions (cont.)

- **ODDS AND ENDS TRANSFER SIZE**
 - MCS16# -- Memory Cycle Select 16-bit (M16#)
 - •IOCS16# -- I/O Cycle Select 16-bit (IO16#)
 - Indicates the adapter card can support 1 wait state 16 bit transfers on the present cycle.
 - These two signals permit a 16-bit memory or I/O device to request that the system board run a 16-bit bus cycle on the I/O channel.
 - NOTE: The ISA BUS defaults to running 8-bit cycles, even if the CPU is transferring 16 bits. The default assumes the transfer is to an XT type adapter.

ISA Conn. 36-Pin Portion: Logical Functions (cont.)

- ODDS AND ENDS
 - MASTER# (MASTER16#)
 - An adapter card can become a limited bus master in the PC/AT.
 - An adapter card wishing to be a bus master takes these steps:
 - ◆1. Make a DMA request on one of the available DMA channels.
 - 2. After receiving the corresponding DACK#, the adapter now activates the MASTER# signal (active low).

Cont. next page

ISA Conn. 36-Pin Portion: Logical Functions (cont.)

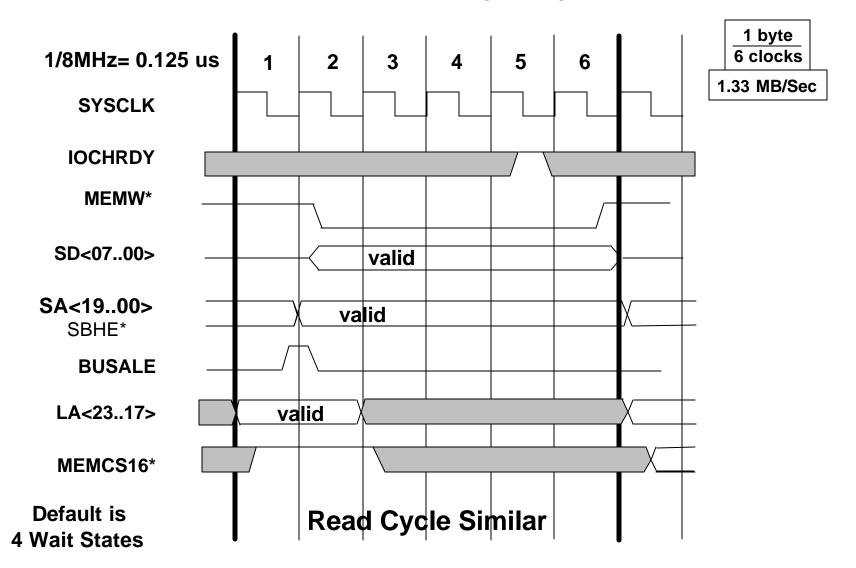
ODDS AND ENDS

- MASTER# (cont.)
 - 3. The adapter can now drive the address, data, and control signals.
 - » MASTER# causes the System Board to turn around bus buffers so the ISA card can drive addresses & bus cycle definitions.
 - 4. To permit memory refresh, the adapter must either drive the REFRESH# signal every 15.6 us or release the MASTER# and the DRQ signals.
 - » The system board actually does the refresh cycle in either case.

ISA BUS CYCLS

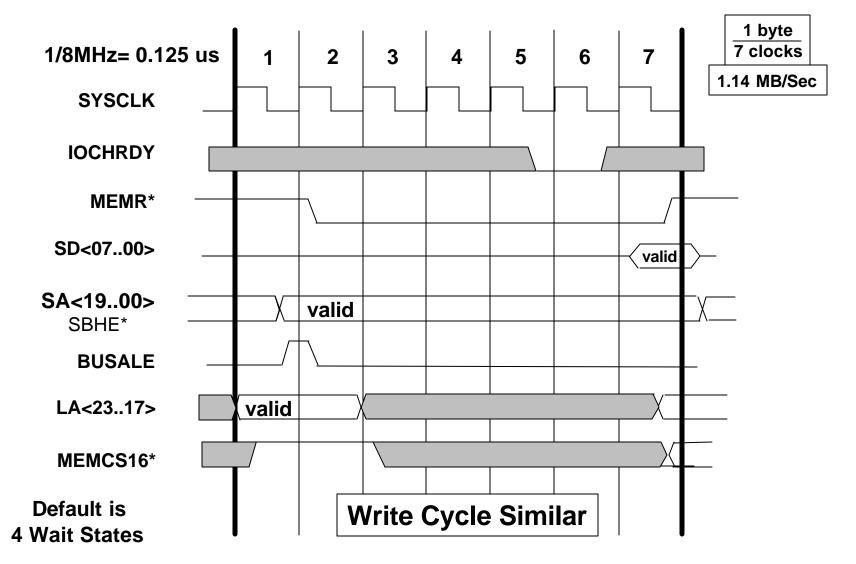
ISA BUS CYCLES

- This section discusses the following topics on ISA bus cycles.
 - •8-bit memory cycles
 - •8-bit I/O cycles
 - Conversion cycles
 - 16-bit memory cycles
 - •16-bit I/O cycles
- The system board contains logic integrated into chip sets that execute bus cycles on the ISA bus.
- These bus cycles look very much like the typical system bus cycles we have seen already.

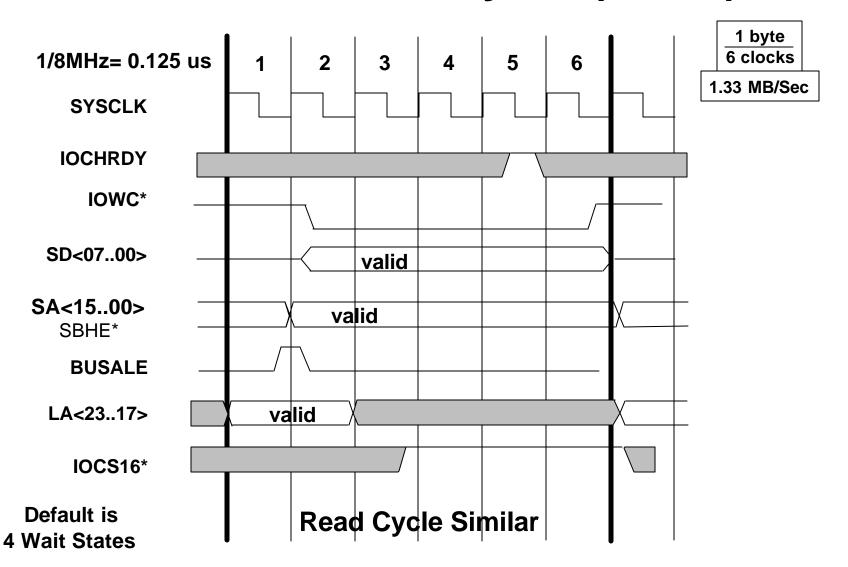

HISTORY OF ISA BUS CYCLE TIMING

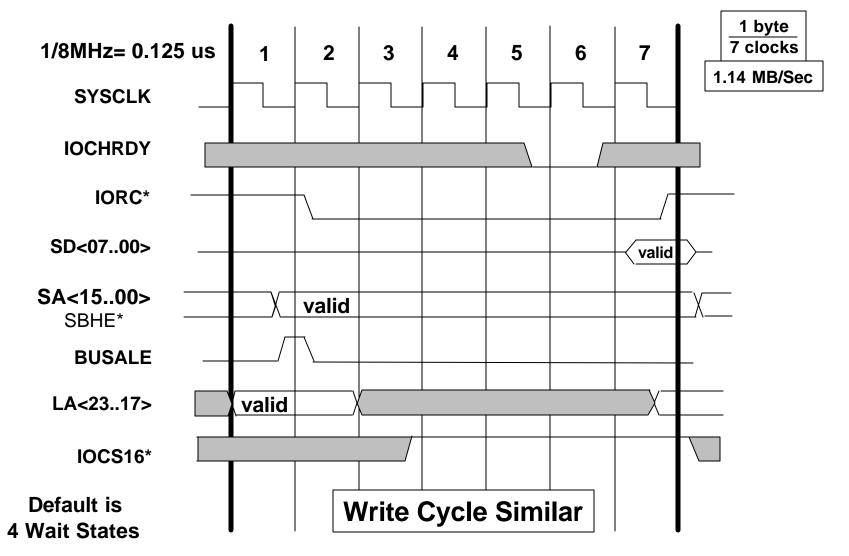
- The ISA bus cycle timing was originally dictated by the 8088 CPU running at 4.77 MHZ.
- The PC/AT I/O channel bus cycle timing included waitstates to lengthen the inherent 286 bus cycles.
 - The original PC/ATs had a CPU clock of 6 MHZ, later increased to 8 MHZ.
- The PC/AT's 8-bit cycles matched closely those of the PC/XT for compatibility. The 8-bit cycles included 4 wait-states.
- The PC/AT's 16-bit cycles included a default wait-state to allow adapters to use slower memory.
- Timing Diagram reference Intel Doc# 458057-001.

Standard 8-bit Memory Cycle (Write)



(Add 1 Wait State) 8-bit Memory Cycle (Read)




Standard 8-bit I/O Cycle (Write)

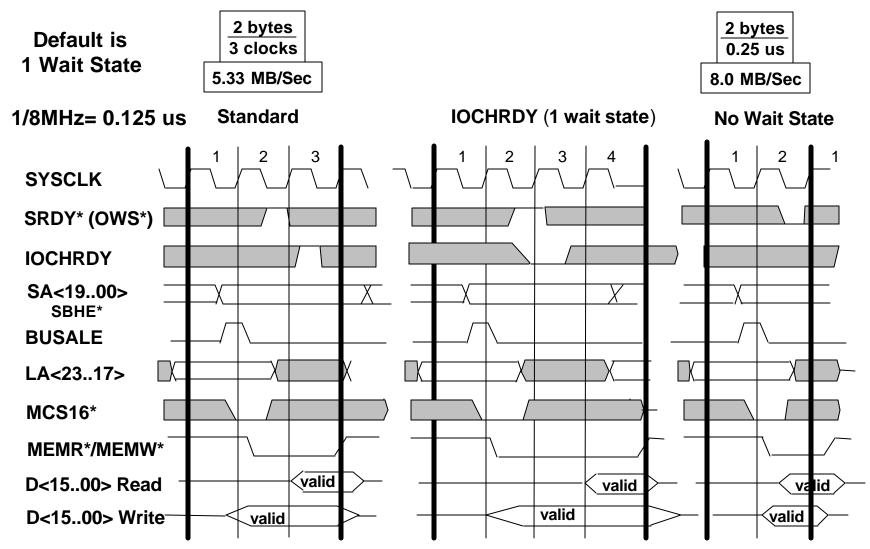
(Add 1 Wait State) 8-bit I/O Cycle (Read)

CONVERSION LOGIC

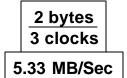
- To make the PC/AT backward compatible with PC/XT memory and I/O boards, the PC/AT system board contains logic to **convert 16-bit bus cycles to two 8-bit bus cycles.**
- NOTE: The Conversion Cycle is the Default.
 - The conversion cycle can be overridden by the use of #MCS16 or IOCS16#.

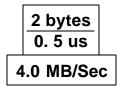
CONVERSION LOGIC

○ Example:

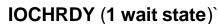

- •An instruction causes the CPU to run a 16 bit Memory Write bus cycle.
- Suppose however, that target of the write is on an 8-bit memory card, connected only to DO-D7.
- The conversion logic will capture the 16 bits coming from the CPU and run two 8-bit bus cycles on the ISA BUS.
 - During the first bus cycle, the low byte is put directly on D0-D7.
 - During the second bus cycle, the high byte is swapped from the upper 8 data lines on the system board to D0-D7 on the ISA bus.

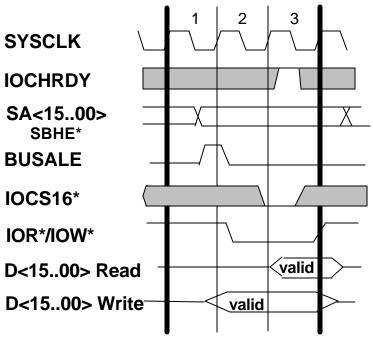
16-bit Memory Cycle (STD, Add 1 WS, OWS)

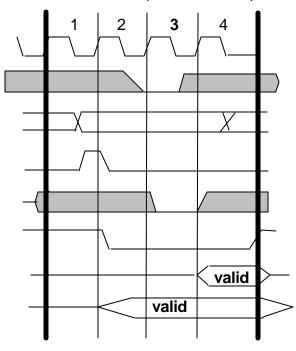





16-bit I/O Cycle (STD, Add 1 WS)


Default is 1 Wait State





1/8MHz = 0.125 us

SUMMARY

WE HAVE DISCUSSED THE FOLLOWING:

- The functions of the Industry Standard ISA Expansion Bus.
- Typical System Bus Cycles.
- The Functions of the Signals on the I/O Channel.
- The ISA BUS Signal Descriptions.
- 6 8-bit Memory & I/O ISA BUS Cycles.
- Conversion BUS Cycles.
- 16-bit Memory & I/O ISA BUS Cycles.

