
1

Orton ZX79 computer manual

Index

Chapter 1 Overview.. 2
Chapter 2 Theory of operation ... 3
Chapter 3 Circuit diagram .. 11
Chapter 4 System timing and design verification ... 15
Chapter 5 Photo ... 23
Chapter 6 Software .. 24

Disclaimer

The information in this document is provided purely as a record of the construction of one of my
computer projects. I provide no assurance or guarantee whatsoever as to the accuracy, safety or

originality of the contents of this document. I provide no warranty whatsoever as to the suitability for
any purpose of the contents of this document. I accept no responsibility whatsoever for any deaths,

injuries or losses resulting from the use of the information contained in this document. I have no
claims to most of the technology used in my projects or described in this document, indeed, it must be

assumed that I have used much copyrighted and/or patented material. But since I do what I do for
purely recreational, educational or personal instructional purposes, I do not believe that I am breaking
the law. It is up to the individual using the information in this document to determine whether, and to
ensure that, their use of the information I provide is both legal and safe. This is supposed to be fun.

Karen Orton 2019

2

Chapter 1 Overview

The computer described in this document was inspired by the ZX80 home computer,
which was released for the UK home market by Sinclair in 1980. That computer used
21 ICs (not including the 5V regulator). The design I present here uses half that
number of ICs. Note that the computer to be described is NOT a ZX80 or ZX81 clone
and will not run either of these machines' ROM code.

The design parameters were as follows:

1. The computer must have enough ROM to support a BASIC interpreter
2. The computer must have enough RAM to run simple user programs
3. The computer must have an alphanumeric keyboard
4. The computer must be able to generate a video text display
5. The computer must have a cassette interface for program storage and

retrieval
6. The computer must have expansion capability

The resulting design has a 40 key keyboard and is able to generate a 24 line by 30
character display. It uses a Z80A microprocessor running at 3.25MHz. The cassette
interface uses on/off keying (OOK) to save and load programs at 300 bits per
second. It has 4k bytes of ROM BASIC and 2k bytes of RAM, which is shared
between programs and screen.

As with the ZX80, this computer cannot maintain a video display and run user BASIC
programs simultaneously. However, a carefully timed machine code program could
maintain both a video display and a running program, and this was seen to great
effect in the games that were designed for the ZX80.

The descriptions which follow require frequent reference to the computer's circuit
diagram, which is supplied in Chapter 3. The computer has been given the tongue-
in-cheek name 'ZX79'.

3

Chapter 2 Theory of operation

Memory map

The computer has 64k bytes of addressable memory, selected through the Z80's 16
address lines. These are assigned as follows:

Z80 address
line

IC5 (ROM)
address line

IC1 (RAM)
address line

Other effects

A0 A0* A0

A1 A1* A1

A2 A2* A2

A3 A3* A3

A4 A4* A4

A5 A5* A5

A6 A6 A6

A7 A7 A7

A8 A8 A8

A9 - A9

A10 - A10 LOW = assert sync
(provided A14 high)

A11 A9 -

A12 A10 -

A13 A11 -

These address lines form font
table row selects

A14 - -

HIGH = enable IC3 for
character latch ROM address *

HIGH = enable video
generation

A15 - -
LOW = select ROM and enable

IC6 for Z80 ROM address *
HIGH = select RAM

* These ROM address lines are multiplexed between the Z80 and a character latch

This memory map has potential for contention: A15 low and A14 high will cause IC3
and IC6 to drive ROM address lines A0..A5 simultaneously. This condition must be
prohibited to avoid stress to the parts involved. Simultaneous changes of A14 and
A15 are also to be avoided where they might result in transient contention.

Note that the ROM's address lines are not contiguous with those of the Z80. A9 and
A10 are skipped. This breaks the former's addressing into eight separate blocks of
512 bytes each. The conventional memory map seen by Z80 programs is therefore:

4

C7FF

C000

Video RAM
(2k bytes)

87FF

8000

System RAM
(2k bytes)

39FF

3800

ROM page 7
(512 bytes)

31FF

3000

ROM page 6
(512 bytes)

29FF

2800

ROM page 5
(512 bytes)

21FF

2000

ROM page 4
(512 bytes)

19FF

1800

ROM page 3
(512 bytes)

11FF

1000

ROM page 2
(512 bytes)

09FF

0800

ROM page 1
(512 bytes)

01FF

0000

ROM page 0
(512 bytes)

This is the default memory map, as seen from the point of view of the user. In fact,
the RAM and ROM have multiple aliases in the memory map, some of which have
special purpose for video generation (see later).

The ROM is actually an 8k byte device. Address line A12 of this part selects between
executable code (addresses 0000 to 0FFF) and font tables for display generation
(1000 to 1FFF). The font tables are not addressable by Z80 code and do not appear
anywhere in the computer's memory map. In fact there are 8 copies of the font table
in the upper half of the ROM. This is because ROM address lines A6..A8 are
regarded as 'don't cares' for the purpose of font look-up.

5

Expansion

The above memory map shows main system RAM and video RAM having distinct
addresses. In fact they are one and the same part on a basic machine. The
expectation is that user programs will occupy the lower part of the available 2k bytes
of RAM, and will be accessed from 8000 up. Accordingly, it is expected that the
video display will occupy the upper portion of the RAM and be accessed through
C400 up.

Expansion of the machine is possible by taking control over the address decoding for
the on-board RAM, such that it is confined to addresses 8000 to 87FF, and C000 to
FFFF. This leaves a 14k byte hole for expansion memory at 8800 to BFFF. When
expanded, it is vital to ensure that the on-board RAM is still addressable at 8000 to
87FF, as essential video support code is located in here.

Address continuity

The usual practise in microprocessor system design is to decode an address, and
then gate this with one of a number of strobes (e.g. /RD, /WR) When this is done the
address only has to remain stable for the time that the strobe is active. However, in
this computer's design the multiplexing of the lower six ROM address lines is
controlled by raw address lines. This demands that the address lines are controlled,
even during refresh cycles. This is accomplished using assignments to the Z80 I and
R registers. Some address line discontinuities are permitted while others are not. All
combinations, and their consequences, are summed up in this table:

Read, fetch or write
address

Refresh address

A15 A14 A15 A14
Selection Comment

0 0 0 0 Permitted

0 0 0 1 Forbidden: contention

0 0 1 0 Permitted

0 0 1 1

ROM

Deprecated: transient
contention possible

0 1 X X Forbidden: contention

1 0 0 0 Permitted but A15 flaps

1 0 0 1 Forbidden: contention

1 0 1 0 Permitted

1 0 1 1

System RAM

Permitted but A14 flaps

1 1 0 0 Deprecated: transient
contention possible

1 1 0 1 Forbidden: contention

1 1 1 0 Permitted but A14 flaps

1 1 1 1

Video RAM

Permitted

6

There is another address continuity requirement which concerns A10. A10 is latched
during read or fetch cycles for generation of the /SYNC signal. Being latched, it
doesn't need the same level of continuity as A14 or A15 however, the output driver of
this latch is under control of A14 and so is dependent upon this address line's
continuity:

Latched A10 Read, fetch or
write A14

Refresh A14 Comment

X 0 0 /SYNC high

1 X X /SYNC high

0 0 1 /SYNC flaps

0 1 0 /SYNC flaps

0 1 1 /SYNC low

Pixel generation is enabled when A14 and A10 are both high. Since A10 is one of
the address lines that determines the byte to be read out of video RAM, the
constraint A10=1 effectively confines video data to the top half of the 2k byte video
RAM. The address continuity requirement here is for the purpose of preventing the
ROM address changing throughout a fetch-plus-refresh event:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 m m m 1 n n n n n k k k k k

Where:
 mmm Identifies a pixel row (0=topmost)
 nnnnn Identifies a character row (0=topmost)
 kkkkk Identifies a character within a row (0=leftmost)

This address, with the exception of A0..A5, must remain stable throughout the entire
character fetch/font look-up process. Address lines A0..A5 are exempt because they
are replaced with a character code by the ROM address multiplexer. Nonetheless,
attention to the R register is still important because the R register increments on
every instruction fetch, and this will eventually alter the state of the A6 refresh
address line. In theory, continuity of address lines A9, A10 is not essential (the ROM
is not addressed by them) but maintaining continuity of these costs nothing anyway.

Character rows must not cross a 64 byte boundary, as this would cause a change of
A6 of the fetch address during the course of a character row scan. The pixel row
address is contained in address lines A11..A13. These select an alias of the video
memory, which allows the video RAM contents to be repeatedly scanned for pixel
row generation, without it being necessary to duplicate character information.

Character set

It probably hasn't escaped the reader's notice that video generation relies on
instruction fetches in order to read a series of characters from memory. In other

7

words, the Z80 actually executes the characters! Trouble is avoided by using
character codes that correspond to innocuous 4 cycle Z80 instructions.

This scheme requires that the instructions needed to get into and out of video
memory correspond to blank spaces, so as not to generate pixels as a result of
these instructions. The character set, and corresponding Z80 opcodes, are as
follows:

Character code
(ROM address)

Z80
opcode

Z80
instruction

Character Comment

00 40 LD B,B A

01 41 LD B,C B

02 42 LD B,D C

03 C3 JP nn Used by supporting code

04 44 LD B,H D

05 45 LD B,L E

06 - - No 4 cycle instruction

07 47 LD B,A F

08 48 LD C,B G

09 49 LD C,C H

0A 4A LD C,D I

0B 4B LD C,E J

0C 4C LD C,H K

0D 4D LD C,L L

0E - - No 4 cycle instruction

0F 4F LD C,A M

10 50 LD D,B N

11 51 LD D,C O

12 D2 JP NC,nn Used by supporting code

13 53 LD D,E P

14 54 LD D,H Q

15 55 LD D,L R

16 - - No 4 cycle instruction

17 57 LD D,A S

18 58 LD E,B T

19 59 LD E,C U

1A 5A LD E,D V

1B 5B LD E,E W

1C 5C LD E,H X

1D 5D LD E,L Y

1E - - No 4 cycle instruction

1F 5F LD E,A Z

20 60 LD H,B 0

21 61 LD H,C 1

22 62 LD H,D 2

23 63 LD H,E 3

8

Character code
(ROM address)

Z80
opcode

Z80
instruction

Character Comment

24 64 LD H,H 4

25 65 LD H,L 5

26 - - No 4 cycle instruction

27 67 LD H,A 6

28 68 LD L,B 7

29 E9 JP (IY) Used by supporting code

2A 6A LD L,D 8

2B 6B LD L,E 9

2C 6C LD L,H "

2D 6D LD L,L $

2E - - No 4 cycle instruction

2F 6F LD L,A :

30 B0 OR B (

31 B1 OR C)

32 B2 OR D -

33 B3 OR E +

34 B4 OR H *

35 B5 OR L /

36 - - No 4 cycle instruction

37 B7 OR A =

38 78 LD A, B Space character

39 79 LD A,C <

3A 7A LD A, D >

3B 7B LD A,E ;

3C 7C LD A,H ,

3D FD JP (IY) Used by supporting code

3E - - No 4 cycle instruction

3F 7F LD A,A .

As can be seen, there are some 56 suitable Z80 opcodes of 4 cycles duration, which
are distinctive in that they do not disturb the sequence of instruction fetches required
to display a line of text. Of these, 4 are lost to supporting code leaving 52 characters
in total. Inevitably, there are side effects of executing characters. These amount to
register manipulations, whose effects are mitigated by confining them to the Z80
alternate register set.

Keyboard scanning

There are eight sense inputs to the computer: one cassette replay input ('CASS');
and seven keyboard column senses (KC1..KC7). Six keyboard row drives
(KR1..KR6) are derived from the upper address bus (A8..A13). The keys are
consequently on a 6 by 7 matrix, according to the following table (normal, unshifted
key shown in each cell):

9

Column

Row
1 2 3 4 5 6 7

1 1 2 3 4 5 6 7

2 Q W E R T Y U

3 A S D F G H J

4 shft Z X C V B N

5 del ret spc L M K

6 P 0 O 9 I 8

The sole input to the computer is the /INT pin, which is driven by a selected column
via a multiplexer (IC9). The state of the /INT pin is tested by momentarily enabling
interrupts and then checking to see whether an interrupt was triggered as a result.
Interrupts are enabled for a single NOP instruction, during which the Z80 samples
the state of the /INT pin during the included refresh cycle. Consequently, the address
bus is defined by the I and R registers during this time. This fact is exploited by using
the refresh address to control the multiplexer, and also to provide a row select for
keyboard scanning.

Cassette interface

The cassette recording output is an attenuated and filtered version of the /SYNC
signal. Saving is performed as a simple stream of bits, each byte beginning with the
least significant bit (LSB). A '0' bit is recorded as 4 cycles of 3.3kHz. A '1' is recorded
as 9 cycles. In both cases, the burst is followed by a 1.3msec period of silence.
There is nothing recorded to mark byte boundaries. There is no error detection or
correction.

'0'

4*300=1200 1300

'1'

9*300=2700 1300

(all timings in microseconds)

10

Each program is stored with a header ('ZX') followed by the program as it appears in
memory, including the terminating pair of 0FFH bytes.

Cassette loading is achieved using the input system for keyboard scanning. One
input of the column multiplexer (input 0) is dedicated as the cassette replay input.
The algorithm for cassette loading begins with a program loop which waits for a
'start' pulse to arrive. In this loop, the load process can be aborted by the user, upon
which any partially loaded program will be discarded. There is also a timeout in this
loop: any wait longer than approximately 2 milliseconds will cause any partial byte to
be discarded.

Once a start pulse is detected, it is verified a few microseconds later and then a
delay of some six cycles of the burst tone occurs, so as to time past the end of a '0'
burst yet stay within a '1' burst. Sampling is then performed, several times in fact,
over one cycle period, in order to differentiate a '0' burst from a '1' burst. If it is
determined that a '1' burst has been detected, then an additional delay is inserted to
time past the end of the burst. The process then repeats by looking for further start
pulses. Loading from cassette terminates when the end of program marker (two
bytes of 0FFH) are read into memory.

'0'

1800

Sample zone

'1'

300

1500

Start End

(all timings in microseconds)

11

Chapter 3 Circuit diagram

22
23
1
2
3
4
5
6
7
8

19 10
9
8
7
6
5
4
3
2
1
0

11
8
7
6

5
4
3
2
1
0

12

10
9
8
7
6
5
4
3
2
1
0

11

13

7
6
5

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

5
4
3
2
1
0

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

20
21
17
16
15
14
13
11
10
9

18

25
3
4

21

5
6
7
8
9

10

24

2
20

19
18
17
16
15
13
12
11

22

23

1 11
18
17
14
13
8
7
4
3

19
16
15
12
9
6
5
2

14
12
10
6
4
2

13
11
9
7
5
3
1

15

39
38
37
36
35
34
33
32
31
30

40
1

13
10
9
7
8

12
15
14

28
22
21
19
5

18

3
2
4
1

13

11
12
10

10
11
12
13
14
15
1
2
3
4

9

16 6

7

5
6

5
6

9
8

2
3
4
5

10
11
12
14

7
9

13

15
6
1

IC1

IC3

2a

2b 2c

2e

2f

IC5

4a

4b 4c

4d

IC6

IC7

IC8

IC9
IC10

A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

A9
A8
A7
A6

A5
A4
A3
A2
A1
A0

/CS
/OE
/W
D7
D6
D5
D4
D3
D2
D1
D0

D7
D6
D5
D4
D3
D2
D1
D0

D7
D6
D5
D4
D3
D2
D1
D0

A11
A10

A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

A11

/RFRSH
/WR
/RD

/MREQ
A15

/HALT

12
11
10
9
8

/E
/G

A12

/INT CLOCK

LE

/G1
/G2

/SYNC

VIDEO

KR5
KR4
KR3
KR2
KR1

KC7
KC6
KC5
KC4
KC3
KC2
KC1

CASS

CP1
D1
/S1
/R1

CP2
D2
/S1
/R1

Q1
/Q1

Q2
/Q2

S1
S0
I7
I6
I5
I4
I3
I2
I1
!0

S2 Z
/Z

/E

A
B
C
D
E
F
G
H

CP
/CLR

QH

SH/LD
CINH

SIN

270R

1k

220p

6.5MHz
all 47k

1k

20
23

/NMI
/WAIT
/BUSRQ

17
24
25

/RESET 26

all 1k

220k

1µ
+

1
27

Vpp
/P

26 NC

2d

1k

13 KR6

12
13

/IOREQ
/BUSAK

/M1

A12
A13 2

3

27

/OE 14

10

14 4

all 1N4148

A14

10k

/OBROUT

/OBRIN

470R

220p

10k

12

List of ICs

IC1 6116 IC6 74LS367
IC2 74LS04 IC7 Z80A
IC3 74LS373 IC8 74S74
IC4 74LS02 IC9 74LS151
IC5 2764 IC10 74LS166

Power distribution

IC1

24

12

IC2

14

7

IC3

20

10

IC4

14

7

IC5

28

14

IC6

16

8

IC7

11

29

IC8

14

7

IC9

16

8

IC10

16

8

All decouplers 100n

+5V

GND

+
100µ

External interfaces

2k7

/SYNC

VIDEO

3k3

1k5 1k

Video out

BC548

1k

MIC out

47n

47p

EAR in

1M

10k

CASS

4k7

BC548

100R 1µ

10k

1N4148

13

Layout

IC1

IC2

IC3
IC4

IC5

IC6

IC7

IC8

IC9

IC10

EXP

Keyboard wiring

3 4 5 6 7 2 1

E R T Y U W Q

D F G H J S A

X C V B N Z sh

8

I

K

M

KC1 KC2 KC3 KC4 KC5 KC6 KC7

9

O

L

spc

0

P

ret

del

KR5

KR6

KR4

KR3

KR2

KR1

14

Expansion connector

GND

A1

A3

A5

A7

A9

A11

A13

A15

D0

D2

D4

D6

GND

GND

GND

/OBROUT *

A0

A2

A4

A6

A8

A10

A12

A14

GND

D1

D3

D5

D7

/RD

/WR

+5V

* /OBRIN

1

 * On-board RAM selects in and out

Must be bridged on unexpanded computer

15

Chapter 4 System timing and design verification

General

The Z80 is clocked at 3.25MHz, resulting in a processor cycle time (Z80 tC) of 308ns.
Half cycle durations (Z80 tW(ΦL), tW(ΦH)) will be assumed to be 154+/-30ns. In the
timing diagrams which follow, all timings are in nanoseconds (ns). In each analysis,
the datasheet figures most likely to cause problems are used. Where a data sheet
provides only a maximum figure for some parameter, the minimum is assumed to be
0. Where only a minimum is supplied, the maximum is assumed to be ∞.

DC loading analysis

Address bus load (µA) Data bus load (µA)
Part

LOW HIGH LOW HIGH

6116 5 5 5 5

LS373 0 0 400 20

LS367 400 20 0 0

2764 10 10 10 10

Z80 10 10 10 10

LS151 400 20 0 0

LS166 0 0 400 20

Keyboard 100 0 0 0

TOTAL 925 65 825 65

All devices are able to drive these loads. An interesting consideration is the time
required for a floating data bus to become invalid. For this determination we will
assume a conservative 50pF capacitive loading, a voltage change of 0.4V, and the
largest data load current from the above table (825µA). This leads to a time period
of:

nse
e

e

i

CV
t 24924

6825

4.0.1250 =−=
−

−==

In other words, data will persist on the data bus for 24 nanoseconds after it is
allowed to float.

ROM read timing

Instruction fetch places the greatest demands on ROM read timing (data read from
ROM has similar timing structure but allows a half cycle more access time).

16

Φ

Z80 A0..A15

T1 T2

A

ROM A0..A5

D

Z80 /RD

H

ROM /G

F

Z80 D0..D7

E

J

G

C

B

Where:

A = 2 * Z80 tC = 616
B = Z80 tW(ΦH) = 184
C = Z80 tD(AD) = 110
D = greater of LS367 tPLH, tPHL, tPZH, tPZL = 40
E = Z80 tDL/Φ(RD) = 95
F = LS02 tPLH + LS02 tPHL = 23
G = Z80 tSΦ(D) = 35

This enables us to calculate:

 H (ROM address access time) = 431
 J (ROM output enable access time) = 279

These figures are consistent with a 300ns 2764 part. The only other consideration is
whether the ROM gets off the data bus quickly enough on termination of a read. The
Z80 is quite generous in this respect, providing around one clock cycle (Z80 tC =
308) between consecutive memory cycles. The output disable time of the 2764
(2764 tDF = 100) is a fraction of this time.

17

RAM read timing

The timing for RAM read is very similar to that for ROM read:

Φ

Z80, RAM
A0..A10

T1 T2

A

RAM /CS

Z80, RAM /RD

G

Z80, RAM
D0..D7

E

H

F

C

B

D

J

Where:

A = 2 * Z80 tC = 616
B = Z80 tW(ΦH) = 184
C = Z80 tD(AD) = 110
D = LS04 tPHL = 15
E = Z80 tDL/Φ(RD) = 95
F = Z80 tSΦ(D) = 35

This enables us to calculate:

 G (RAM address access time) = 471
 H (RAM chip select access time) = 456
 J (RAM output enable access time) = 302

These figures are consistent with a 450ns 6116 part. Again, the output disable time
of the 6116 (6116 tDF = 100) is a fraction of the available time.

18

RAM write timing

Φ

Z80, RAM
A0..A10

T1 T2 T3

A

RAM /CS

Z80, RAM /WR

J

Z80 D0..D7

F

H

G

B

D

E

K

L

M

C

Where:

A = 2 * Z80 tC + Z80 tW(ΦH) = 740
B = Z80 tW(ΦL) = 124
C = Z80 tW(ΦH) = 184
D = Z80 tD(AD) = 110
E = LS04 tPHL = 15
F = Z80 tW(WRL) = 278
G = Z80 tDH/Φ(WR) = 80
H = Z80 tD(D) = 150

This enables us to calculate:

 J (RAM address valid to end of write) = 630
 K (RAM address, data hold time) = 44
 L (RAM chip select valid to end of write) = 615
 M (RAM data valid to end of write) = 406

Any 6116 part will meet these timing constraints.

19

Pixel clock timing

The timing surrounding pixel generation is on two levels. At the fastest level, a pixel
clock drives a shift register, and clocks a divider for generation of the processor
clock. The latter clock then samples the next shift/load state for the shift register.
Since the shift/load state evolves at the slower rate, there are potentially two loads
performed for each displayed character. In fact, the shift/load pulse is shortened so
that only a single load occurs. This shortening is commanded by /MREQ returning to
the high state.

Not all refresh cycles load the pixel shift register. A load inhibit signal is provided by
IC4d which is active under the following circumstances:

1. /MREQ is high (for pulse shortening)
2. A14 is low
3. The previous read (i.e. instruction fetch) was NOT from on-board RAM

Note that /RFRSH is omitted from the following diagram for clarity. While /RFRSH
being low is a necessary condition for shift register load to occur, /MREQ is the
determining control signal.

ΦP

IC10 SH/LD

A

B

J

C

Φ

K

D

/MREQ

F

M N N

T4 T3

E

IC8 pin 2

G L H L

IC10 A..F

X Y

Where:

A = tCP = 154

20

B = S74 tPLH = 9
C = Z80 tC = 308
D = S74 tPHL = 9
E = Z80 tDHΦ(MR) + Z80 tW(MRH) = 279
F = Z80 tDH/Φ(MR) = 85
G = LS02 tPLH = 18
H = LS02 tPHL = 15
J = S74 tPHL = 9
K = LS02 tPHL + S74 tPLH = 24

 X = LS166 ts = 20
 Y = LS166 th = 15

This enables us to calculate:

 L (S74 data setup time) = 11
 M (LS166 SH/LD hold time) = 15 *
 N (LS166 SH/LD setup time) = 36

* Capacitance alone can guarantee this figure. The hold time requirement of the S74
(S74 th = 2) is similarly guaranteed.

These timings meet the LS166 and S74 specifications. Note that IC8 pin 2 is driven
high exactly one cycle of the pixel clock rising edge, specifically, near the centre of
T4. From the above diagram we can determine just exactly when the shift register
will require stable data from the font table look-up. Relative to the processor clock
falling edge in T4, we require that: pixel data is stable X + D = 29ns prior to this
edge; and that pixel data holds for a minimum of Y = 15ns after this edge.

Character read and font table look-up

This analysis can draw upon the previous examination of RAM read. In that exercise
we arrived at 6116 timing constraints to achieve the minimum data setup time for the
Z80 (Z80 tSΦ(D) = 35). As with the previous analysis, /RFRSH is low during T3 and
T4, but is not included because it is gated by /MREQ. ROM address lines A6..A12
are also not included as these are guaranteed stable by software.

21

Φ

D0..D7

T2 T3 T4

A

/RD

K

/MREQ

F J

RAM

B

H

E

M

G
D

ROM A0..A5

ROM

L

C

Where:

 A = Z80 tDHΦ(RD) = 85
 B = Z80 tC + Z80 tW(ΦH) = 432
 C = Z80 tDHΦ(MR) + Z80 tW(MRH) = 279
 D = Z80 tDH/Φ(MR) = 0
 E = Z80 tSΦ(D) = 35
 F = 6116 th = ?
 G = 29 (from previous section)
 H = LS02 tPHL + LS02 tPLH = 0
 J = 15 (from previous section)
 K = greater of LS373 tPLH, tPHL = 40

This enables us to calculate:

L = (ROM output enable access time) = 124
 M = (ROM address access time) = 420

It is clear that, if the worst case minimum for timings D and H are taken (0), then we
cannot meet the LS166 data hold time requirement of timing J. However, in reality
these figures are likely to be a significant fraction of the maximum values (Z80
tDH/Φ(MR) = 85, LS02 tPHL + LS02 tPLH = 23). In any case, the data bus will be going to
the float state, and this alone will preserve the data on the data bus for a couple of
dozen nanoseconds.

We must also consider the data hold time requirement of the LS373 after /RD returns
high (not helped by the inverter IC2c in the LE path). This figure is LS04 tPHL +

22

LS373 th = 35). Again, the 6116 data sheet provides no minimum data hold time for
read cycles, instead supplying a data float figure (6116 tDF = 40). But as before, the
data bus is going to float, and capacitance will extend the 6116 data hold time
sufficiently.

A more serious problem was encountered during the design: the A10 hold time after
/RD goes high is calculated as Z80 tD(AD) - Z80 tDHΦ(RD) = -85, which is 120ns too late
to meet the latch hold requirement. This problem was resolved by including an RC
delay network in the A10 path to the latch input.

23

Chapter 5 Photo

24

Chapter 6 Software

General

The ZX79 runs a dialect of BASIC inspired by National Instruments' National
Industrial BASIC Language (NIBL). This is a tiny (integer) BASIC with limited string
and array support.

