Many microcomputer systems use a DMA controller

between the floppy disk controller and the CPU.

This additional hardware may not always be necessary.

Floppy Disk
Data Transfer Techniques

Ttevor G. Marshall
John A. Attikiouzel

University of Western Australia

It is often assumed that a direct memory access con-
troller increases the speed of operation of a disk operating
system. This is a fallacy for most microcomputer
operating systems (such as CP/M) because it presupposes
that the CPU can be doing something useful while the
disk I/0 is being performed. Nevertheless, it is not a
trivial task to achieve the required data transfer speeds
with a MOS microprocessor. Here, we will examine
several data transfer techniques which can be used with
the Z80A microprocessor.

The task of a DMA controller, when used with a flop-
py disk controller (FDC), is to take a burst of data from
the FDC and store it into memory at the correct address
(the DMA address) requested by the disk operating
system, Data are recorded on an 8-inch, double-density
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floppy disk at a rate of 500K bits per second, so a new
byte of data is assembled by the FDC (nominally) every
16 microseconds. The rate at which the bytes are assem-
bled from the serial disk data and presented to the DMA.
controller depends solely on the speed and synchroniza-
tion of the disk rotation, and is asynchronous with the
operation of the CPU or master system clock.

"When a DMA controller is used, it must be able to ac-
cess the system bus every 16 microseconds to write a new
byte of data to the memory. It can do this in three ways.
In the byte mode, the DMA controller transfers data one
byte at a time, interrupting the processor whenever it re-
quires memory access (every 16 microseconds). This mode
is not practical at floppy disk data transfer rates, however,
as the CPU needs to spend almost all the DMA interval
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servicing and returning from the interrupt. In the con- the CPU is ‘‘locked out,’’ unable to do useful computa-
tinuous mode, the DMA controller takes command of  tion. The most productive technique is the burst mode—
the system bus for the entire DMA interval. However,  when a byte is ready for transfer, the DMA controller
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asserts BUSREQ* to ‘‘hold”’ the CPU in its current state
(by requesting bus control), takes control of the system,
and writes the data directly to RAM, releasing the CPU
for most of the cycle (usually for about 14 of the 16
microseconds).

This protocol is extremely efficient but presupposes that
the CPU has some useful operations to perform while
waiting for the data from the disk. With CP/M this is
not true. (Indeed, we know of no microcomputer DOS
which implements true multitasking with its disk 1/0.)

Although a DOS can be written so that the CPU can
continue to operate usefully during disk I/0, CP/M has
been written to ease hardware portability. The DOS kernel
is thus quite distinct from the basic I/0 system (BIOS),
which actually performs the I/0. The DOS requests disk
data (a logical sector of 128 bytes), and the BIOS must
then place that data into memory before returning con-
trol to the kernel. Thus, the DOS kernel loses control of
the system whenever a disk I/0 (BIOS) request is made.
Although user-supplied, interrupt-driven routines to con-
trol printers and console I/0 can be written to operate
during periods of disk latency, the character throughput
will rarely require the services of the DMA controller,

The one exception to the above argument occurs when
a disk cache buffer (see below) is implemented by the
BIOS. The sector requested may indeed be validly in the
track buffer while other (currently unnecessary) data are
being read from the disk. In order to use the sector from
the buffer, the CPU would have to continuously check
whether the data currently being read include the re-
quested sector and would then have to begin to process
the data for the kernel (transferring the data from the

;When a ﬂappy‘d%sk is rotatmg (at 360 rpm), an
ticular sector :'asses the read head niyro
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disk cache buffer into the main memory). A time-
consuming algorithm would be needed to ensure data in-
tegrity. We know of no system currently attempting such
a technique.

Replacing the DMA controlier

The task of replacing the DMA controller reduces to
writing software that

e reads a data byte assembled by the FDC,

e stores that byte in RAM at the DMA address,
e increments the DMA address, and

® waits for the next byte to become available.

We will examine two methods of implementing such an
algorithm,

Synchronization via the nonmaskable interrupt. The Z80
has a nonmaskable interrupt input. When this line is ac-
tivated (edge triggered), the current instruction is com-
pleted and a restart to location 66 is executed. This is the
fastest interrupt response mode on the Z80. In addition
to completing the current instruction, the CPU takes five
clock cycles (T states) to service the interrupt and another
six to perform the stack-write operations. Response time
depends on the length of the instruction being executed,
but if the interrupt occurs from a HALT state (the ex-
ample described below), a total of 15 T states (3.75
microseconds at a 4-MHz clock rate) can elapse before
the interrupt routine gets control.

microcompixter
chester . dlsks
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Figure 1. Hardware to implement nonmaskable interrupt
synchronization.
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The hardware used to implement the handshake pro-
tocol with a WD279Xt floppy disk controller is shown
in Figure 1. IRQ (interrupt request) and DRQ (data re-
quest) are ORed, and the result is ANDed and the HALT
status output from the Z80. Thus, whenever either IRQ
or DRQ is asserted by the FDC and the CPU is HALTed,
an NMI¥* is asserted to the CPU.

Consider the Z80 assembly code shown in Figure 2.
Assume that the FDC has been commanded to begin the
read operation and that the HALT instruction has been
executed. When the NMI* occurs (due to DRQ being
asserted), a restart to the RET instruction is effected. Ex-
ecution then recommences at the INI instruction. INI
reads a byte of data from the I/O port addressed indirect-
ly by the contents of register C (where the FDC data
register is located), stores the byte at the memory address
pointed to by HL, increments the contents of the HL
pointer double register, and decrements register B, set-
ting the zero flag when B = 0. The JP NZ instruction
therefore either branches back to the HALT (and waits
to receive more data) or allows the program to flow on-
to the routines checking the FDC error status preparatory
to returning control to the DOS kernel. If B were initial-
Iy loaded with 10, then 10 bytes of data would be accepted
from the FDC before the read loop was exited. As disk
sectors usually have lengths of 128, 256, 512, or 1024 bytes
per sector, B is usually loaded so that a complete sector
of data bytes is read before the read loop is exited. As
B is only a single register (max count = 256), a more com-
plex read loop is usually required. The read loop shown
in Figure 3 is satisfactory for sector lengths to 1024 bytes.

Although the first three INIs decrement B, it is im-
mediately incremented to its previous value by the INC
instructions. Consequently only one decrement remains
for each pass of the loop, although four bytes have been

1The WD179X series of FDCs has been superseded by the WD279X
devices, which have an on-chip data separator and write precompensa-
tion. These additional facilities work well. We have found the WD279X
devices to be slightly superior in data recovery. They should be preferred
for new designs.

read. Thus, 256 x 4 = 1024 bytes can be processed by
this loop.

The worst-case timing delay occurs from the INI at
800D to the INI at 8001, a total of 51 T states (12.75
microseconds at 4 MHz). This must be less than the
16-microsecond nominal FDC data rate. The FDC ser-
vice time (byte-to-byte), however, depends not only on
disk speed variation but also on the worst-case bit shifts
and FDC overhead figures. Western Digital states a worst-
case service time of 11.5 microseconds for write opera-
tions and 13.5 microseconds for read operations. The
longer loop satisfies only the write criterion when the total
loop time is considered. If it is desired, the loop can be
extended further to improve the service time. (The ser-
vice time is asymptotic to 11.25 microseconds.) In prac-
tice this has never been found necessary—indeed, for
several years we have operated a system with a
14-microsecond service time without any lost-data errors
which could be attributed to insufficient FDC service
time.

If wait states are needed to accommodate slow RAM
(see top opposite), the M1 wait-state generator causes six
extra T states to be executed, giving a worst-case loop
delay of 14.25 microseconds. This is not fast enough to
meet the worst-case byte timing specifications, but it has
proven adequate in practice.

If an error occurs while the sector data are only par-
tially read, IRQ is asserted and DRAQ is held inactive. This
causes the remaining portion of the DMA memory to be
filled with whatever data are present on the data output
of the FDC. (The FDC usually retains the last byte
assembled or, if a seek error has occurred, the number
of the sector being sought.) Although this is undesirable,
it does not cause any real problems in practice.

It is also possible to use the Z80 in Interrupt Mode 1
if the NMI* is needed for other system functions (power
down, for instance).

It is usual for the disk I/0 routines to save the value
of any byte of data present at address 66H upon entry,
replace it with the RET instruction during execution, and
restore the original value when the routines are done.

Synchronization via the wait control line. The Z80 has
a WAIT* input. When WAIT* is asserted, the CPU in-
serts additional T states into the instruction currently be-
ing executed until WAIT* goes inactive. Use of the
WAIT* input is the fastest and most accurate way to syn-
chronize CPU operation with asynchronous peripherals.
The S-100 bus structure implements WAIT* via XRDY*
and RDY* signals.! Thus, it is common to find this syn-
chronization technique used in S-100 systems.

Figure 4 illustrates one technique for implementing the
hardware-based handshake protocol. The simplest read
loop that can be used with this technique is shown in
Figure 5. The WAIT* line is asserted every time the FDC
data port is addressed by the INI instruction, and is reset
by a DRQ or IRQ from the FDC indicating that it has
data ready for transfer. (However, the data may be in-
valid if IRQ has been asserted.) Thus, when the INT in-
struction is executed and the CPU tries to read the data
byte from the FDC, WAIT* is asserted until the data are
ready; when the data are ready, the byte is placed on the
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- access hme of less than 50() nanoseconds (even less "

bus and the CPU recommences execution. The loop is
terminated when B =0, as before. The FDC service time
of this loop is only 6.5 microseconds.

A more complex (but slower) read loop, capable of ex-
amining IRQ and DRQ separately, is shown in Figure 6.
In this loop, IRQ has been made available to the CPU
via a control port, which may be polled. If an error con-

for the use of walt étates s aslower exeeu’aan 5 ed

dition occurs during the read, IRQ will be asserted; when
the RR is executed, carry will be set, causing a jump to
the error routine.

The use of both relative and absolute jumps here reveals
an important but seldom-appreciated quirk of the Z80’s
behavior. The execution time for a JP instruction is 10
T states whether the jump is taken or not. JR, however,

0066 RET

' LD C,FDC.DATA.PORT
LD HL,DMA.ADDR
LD B,LOOP.COUNT

;The read loop follows

8000 LP1: HALT

ADDRESS MNEMONIGC COMMENTS

;The NMI restart vector address
;Control merely returns to remain routine

;The following initialization is performed prior to reaching the
; read loop routine (at 8000H in this example)
;Point C to the FDC data port address

;Point HL to the base DMA address
;B determines the number of read loops

;A hypothetical base address for I/O routine

8001 INI ;A Z80 block I/O instruction
8003 JP NZ,LP1 ;The looping control instruction
8006 ;Various error status testing routines follow

Figure 2. Z80 assembly code for synchronization via the nonmaskable interrupt.

8000 LP1: HALT

; (Register initialization and NMI vector setup as before)

4 + 11 + 10 T states before INI is executed

8001 IN{ ;16 T states
8003 INC B 4 T states
8004 HALT

8005 INI

8007 INC B

8008 HALT

8009 IN{

800B INC B

800C HALT

800D INI ;16 T states
800F JP NZ,LP1 ;10 T states

Figure 3. Read loop.
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Figure 4. Handshake hardware for wait-state synchronization.

takes only 7 T states if the jump is not taken, or 12 if
it is. Thus, in the above loop JR at 8003 is more efficient
than JP, as the error jump is seldom taken. At 8007,
however, the reverse is true and JP is more efficient. With
this loop, 48 T states (12 microseconds at 4 MHz) elapse
between synchronization intervals. With wait states, this
increases to 13.5 microseconds.

For sectors longer than 256 bytes, read loops similar
to those used with NMI* synchronization can be
constructed,

Satisfactory operation can also be obtained if the wait -

states are triggered by a read from the status port.

Normally the wait-state circuitry is only enabled im-
mediately before the read/write is to take place, via set-
ting of the wait enable flip-flop. This prevents wait states
from being generated during other FDC operations, when
they are not required.

Choosing between the two techniques. Dynamic RAM
can be refreshed by means of the Z80’s inherent refresh
capability. If such RAM is present in the computer
system, it will not be possible to use the wait-state syn-
chronization technique without violating the two-
millisecond refresh interval of the RAM, The Z80 executes
one refresh cycle with each instruction. (An exception is
the HALT instruction, which causes a succession of NOPs
to be executed, thus maintaining refresh.) If an instruc-
tion is ¢‘stretched’’ by the addition of wait states, refresh
of the memory will not be performed. Worst-case waiting
periods of up to one revolution (166 milliseconds) will
occur under normal conditions; the waiting periods will
be even longer if error conditions are present.

NMI* synchronization is more common in smaller
(typically single-board) computers which use the Z80
refresh capability to minimize chip count. Wait-state syn-
chronization is more common in larger (bus-oriented)
systems which generally cannot take advantage of
processor-dependent features such as an NMT* input,

One can construct write routines by simply substituting
OUTI instructions for the INI instructions in the read
routines. However, any hardware implementation must
generate an early WAIT* signal, as the Z80 samples its
WAIT* line before asserting the WR* strobe. The
WRITE instruction cycle can be anticipated by the
presence of an active (low) IORQ* signal and the absence
of active (low) RD* or MI* status signals.

JP NZ LP1

;i(No NMt vector is required, as interrupts are not used)
;The following initialization occurs before the read loop

LD HL,DMA.ADDR ;Same Initialization values as before

;Interrupts must be inhibited

; is entered
LD B,LOOP.COUNT
LD C,FDC.DATA.PORT
Dl

LP1: INI

;The read loop

Figure 5. Simplest read loop that can be used with the hardware-based handshake protocol.

s(Initialization same as before)

éOOO LP1: IN A(CONTROL.PORT) ;in which bit 0 has the DRQ status

8002 RR A ;Quicker than AND 01
8003 JR G,ERROR.ROUTINE

8005 INI

8007 JP NZ,LP1

Figure 6. Read loop capable of examining IRQ and DRQ separately.
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Implementation examples

Intelligent disk controller. We constructed an intelligent
disk eontroller which performs the same functions as the
disk controller used in Intel MDS-800 microcomputers.t
Our controller uses only a Z80, a parallel port (PIO), an
EPROM, and a handful of gates to fully emulate the in-
struction set of the bit-slice-based Intel controller, thereby
effecting a large reduction in chip count, operational com-
plexity, and power consumption. Because we designed
the controller for use in an S-100-based microcomputer,
we used the wait-state synchronization technique. We did
not use RAM for a stack but instead devised a novel
technique employing ROM vectors for the interrupt and
return stack operations.

Our controller can read a complete track sequentially
without intervention by the host CPU and can operate
in a manner analogous to an intelligent DMA controller.
When the host CPU requests an operation via the 1/0
disk parameter block, the controller’s Z80 acquires the
bus, operates on the request, and then returns control to
the host (main) CPU.

A disk cache buffer implementation. To test disk cache
buffering,tt we devised a BIOS for a low-cost, single-
board computer.7TT We used the NMI synchronization
technique. The cache technique was a modification of that
used by Van Valzah.2 By replacing 16K dynamic RAMs
with 64K devices, we made an extra memory bank of 48K
available. We designed a double-density disk controller
(using the WD1793) to plug into the WD1771 (single-
density) controller socket. One 48K bank of memory was
assigned to hold the cache buffers. For each of the two
drives, storage was allocated as follows:

» 6528 bytes for holding the disk directory track,

* 6528 bytes dynamically assigned to the most recent-
ly read track, and

e 6528 bytes dynamically assigned to the most recent-
ly written track.

This left approximately 9K bytes for other tasks. We ex-
perienced no difficulty in reading a track sequentially—
hence, the use of a DMA controller would not have in-
creased disk throughput.

The operational speed of the cache buffer system with
disk-intensive programs was never less than three times
that of a standard nonbuffered system. In a benchmark
test against a system with a 14-inch Winchester disk and
no cache buffering, the cache technique provided slight-
ly faster execution. To be fair, however, we must point
out that for the 14-inch disk CP/M had to search 511
directory entries for each file entry/close/extend, while
the cache system had to search only 256. Indeed, the most

TCopies of the controller software are available in Volume 40 of the
SIG/M Users’ Group Software Library, available from SIG/M, PO Box
97, Iselin, NJ 08830, or from the authors at the address given at the end
of this article. Hardware diagrams and a detailed description are also
available from the authors.

+1Copies of the software are available in Volume 141 of the SIG/M Users’
Group Software Library (see preceding note for address).

+11The ‘Ferguson Big Board” from Digital Research Computers,
Garland, Texas. ’
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obvious reason for the excellent performance of the cache
system was the directory buffering. CP/M frequently
needs to get more information about the extent of a file
from the directory. Normally this requires a seek back
to the directory tracks. However, if these tracks have been
kept in RAM, no physical head movement is necessary.

No operational advantage can be gained from adding
a DMA controller to a microcomputer using a 4-MHz
Z80A and running a CP/M-based DOS. A Z80-based
system that employs software DMA and cache disk buf-
fering can perform as well as the most sophisticated 8-bit
system currently available. In addition, the techniques
described here can be advantageously used with other
microprocessors—such as the Z8000—which possess
block 1/0 instructions. H
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