CP/M System Test Drive:
The goal of this exercise is to take a PROM based CP/M system which is available from several configurations and use that infrastructure to learn the tools and accomplish something useful. It proves that one can do a lot early in the build cycle and that a CP/M system works just fine on a small scale. No question there is more power in a PC, but then that is not the reason for acquiring a CP/M system.
In this case, I am using the Lynch PROM which he provides as a debug tool for those who buy their first few project cards. This is the SW003 code discussed in his descriptions of the N8VEM hardware and software. The PROM monitor facility is the first tool for exploration. The CP/M system configuration provides a read only A: disk with Xmodem (XM), Real Time Clock (RTC), and Hello World (GM) programs, an smaller empty read-write B: disk, and a CP/M utility disk F: with all the tools you need to do something useful. Executing GM will send you a message and then return to the startup Monitor (not CP/M).
The Monitor provides a means for looking into the PROM and RAM space to see what is available and where these facilities are located. There is also the ability to read and set registers which can be used to configure and send data to the peripheral chips in the system (Parallel output 8255A and 16C550 UART for example). There is a R/W scratch register in the UART at 6FH, so one could load a hex value (o6fc3) and then go back and read the register (i6f) to see if the register was correctly loaded. So given the above, how about changing the baud rate with the load register facility? (This will fail because the UART is needed to execute the writes, and the change to the Line Control Register (80H) takes the UART from move character mode to configure mode so terminal communication is lost).
I used the CP/M dump tool and monitor facility to scan through the PROM chip to see what was built into that particular PROM. I could just as easily have used a PROM programmer to read and display the contents of the chip when I made myself a backup copy (and for a later exercise I can erase that full megabyte AT27C080 memory and build an even larger system while I run the board on a smaller half megabyte memory chip where I have several copies in case I do something dumb). The scan revealed the sign-on messages for each of the utilities included on the F: disk. This inclusion set is visually confirmed by requesting a Dir F: or LS F:.
F>dir

F: PIP COM : ASM COM : STAT COM : DDT COM

F: DUMP ASM : DUMP COM : SUBMIT COM : XSUB COM

F: ED COM : LOAD COM : DEBLOCK ASM : RTC COM

F: VDE263 COM : VINST263 COM : BOB TXT : BBCBASIC COM

The first exercise is to use the Edit (ED) tool to examine and modify the BOB.TXT file. Ed is moderately intuitive once you get the hang of it, but it will take a while before one might call it user friendly. In any case, BOB is a good place to start, and with some functional comfort attained, there are the two ASM files to tackle. Use PIP to make a copy of DUMP.ASM (F>pip B:DECODE.ASM=F:DUMP.ASM), and then use the assembler (ASM) to build the DECODE.ASM file (generating DECODE.PRN and DECODE.HEX) and the LOAD tool to convert it to a DECODE.COM file [B>F:LOAD DECODE.HEX]. The COM file should execute in memory and produce the same result as the original DUMP tool. All of these exercises should be done from the B: disk (which is writable) with source disk designations to identify where the tools can be found on the read only F: disk [i.e. B>F:ASM F:DECODE.ASM]. The PRN and HEX files will be written to the default B: disk which is read-write (but relatively small).
The CP/M manual set (user and programmer) for CP/M 2.2 in the archive provide the detail command structure for all of these development tools. Given the small size of the B: disk, it will be necessary to ERASE (ERA DECODE.PRN) some of these files as you go along so as not to exceed the capacity of the RAM disk drive. Implementation of a disk support board (with or without a physical rotating disk) is a good way to gain more file space that can deal with large PRN and BAK files which are very useful during the development and debug efforts.
Once the basic utility of the CP/M tools is understood, it is a good time to develop and test a new utility from almost scratch. Almost scratch means that building a new tool need not start at square zero, but use chunks of already existing code to build on. For this exercise, let’s recall that this SW003 PROM configuration supports 9600 baud and no UART FIFO buffer; but there is no reason why we can’t change that. Look through the PROM source code with your PC and find the routines for setting the initial configuration of the UART chip and extract that code and the set of UART Register addresses (68H-6FH) to a separate file we will call BAUD.ASM. Go to the Web and find a PDF copy of the UART chip datasheet and compare the configuration data to the stub of code in your BAUD.ASM file.
Next, go back to CP/M on the B: disk and edit the DUMP.ASM file to remove all of the DUMP specific code, but keep the basic equates, addresses, and generic code that might be useful in the future to run I/O, or startup and return to CP/M code. This piece of code can serve as a skeleton to start new utility files or other useful programs. The SCRATCH.ASM file might look something like Appendix A.
Think about the functionality one might want in a routine to set UART baud rates on the fly. While we could locate the UART init code in the PROM and patch that code in the programmer buffer, we can build a tool for changing the baud rate after the system starts up. We will of course have to change the baud rate in the terminal emulator device, but there is no reason to go back and cold start CP/M again which would return the baud rate to the initial 9600 baud. One could elect to provide several common baud rates and turn on the FIFO while working with the UART. A simple program to accomplish the above task and return to CP/M via the warm boot path might look like Appendix B.

Implementing this code could be accomplished in several ways. Most direct, one might type the code into the BAUD.ASM file using the Editor, and then build the assembly file into an executable using the standard CP/M tools in the SBC. An ASM file could be developed on a PC and downloaded via the Xmodem (XM) tool on disk (B:A:XM R BAUD.HEX). Alternatively, the code could be put together and tested on a PC with a CP/M emulator (SIMH). The functional code could then be downloaded to the SBC using the Xmodem facility to move the HEX or COM version of the code. Somewhere along the way, it is worthy to master both approaches.
There is a very nice Altair 8800 emulator that is part of the Peter Shorn SIMH emulator system available on the WEB (here).

This is a superset emulator for the Altair 8800 as its facilities exceed those of the original hardware system. There are a couple of 8MB virtual disk drives in the emulator system; which allow working with several large files concurrently. You can also easily load in your favorite non-CP/M tools, like a Z80 or relocatable assembler.
The next step to consider might well be mastery of the BASIC interpreter provided on disk F:. Having accomplished a baud rate change with an assembly code, it might well make sense to take this same requirement and implement it via the BASIC package. On the WEB, there is a site for the BBC Basic, which includes a CP/M executable, and a Windows executable. On that site there is a tab for RT Russell which will lead you to the Z80 CP/M version of Basic and there is a manual available (the manual on the first page is a 16bit windows version manual).

APPENDIX A
; FILE XXXX PROGRAM, CODE SKELETON AS A STARTING PLACE
;

BDOS EQU 0005H ;DOS ENTRY POINT

CONS EQU 1 ;READ CONSOLE

TYPEF EQU 2 ;TYPE FUNCTION

PRINTF EQU 9 ;BUFFER PRINT ENTRY

BRKF EQU 11 ;BREAK KEY FUNCTION (TRUE IF CHAR READY)

OPENF EQU 15 ;FILE OPEN

READF EQU 20 ;READ FUNCTION

;

FCB EQU 5CH ;FILE CONTROL BLOCK ADDRESS

BUFF EQU 80H ;INPUT DISK BUFFER ADDRESS

;

UART0: EQU 68H ;DATA IN/OUT REGISTER

UART1: EQU 69H ;RX STATUS

UART2: EQU 6AH ;INTERRUPTS REG

UART3: EQU 6BH ;LINE CONTROL

UART4: EQU 6CH ;MODEM CONTROL

UART5: EQU 6DH ;LINE STATUS

UART6: EQU 6EH ;MODEM STATUS

UART7: EQU 6FH ;SCRATCH REGISTER

; NON GRAPHIC CHARACTERS

CR EQU 0DH ;CARRIAGE RETURN

LF EQU 0AH ;LINE FEED

;

; FILE CONTROL BLOCK DEFINITIONS

FCBDN EQU FCB+0 ;DISK NAME

FCBFN EQU FCB+1 ;FILE NAME

FCBFT EQU FCB+9 ;DISK FILE TYPE (3 CHARACTERS)

FCBRL EQU FCB+12 ;FILE'S CURRENT REEL NUMBER

FCBRC EQU FCB+15 ;FILE'S RECORD COUNT (0-128)

FCBCR EQU FCB+32 ;CURRENT (NEXT) RECORD NUMBER (0-127)

FCBLN EQU FCB+33 ;FCB LENGTH

;

 ORG 100H

;

; SET UP STACK

 LXI H,0

 DAD SP

;ENTRY STACK POINTER IN HL FROM THE CCP

 SHLD OLDSP
;SET SP TO LOCAL STACK AREA (FINIS RESTORES)

 LXI SP,STKTOP

;**
;CODE EXTRACTED FROM RECENT PROM INIT ROUTINES

SIGNON: LD A,C3H ;ANY CHAR TO WRITE TO REG

 OUT UART7,A ;WRITE TO SCRATCH REGISTER

 IN A,UART7 ;READ IT BACK - IS REG THERE?

 CP C3H ;IF THERE THEN UART EXISTS

 JP NZ,NO_UART
;NO UART AT THIS ADDRESS
 LD A,01H ;SET EXIT STATUS CODE
 JP UART_OK ;GO GET THE JOB DONE
NO_UART:LD A,01H ;SET EXIT ERR CODE
 JP RESTART ;BACK TO SYSTEM
UART_OK:LD A,80H ;SET DLAB FLAG

 OUT UART3,A ;

 LD A,0CH ;SET BAUD TO 9600

 LD A,06H ;SET BAUD TO 19200

 OUT UART0,A ;SET THE UART TO RATE

 LD A,00H ;

 OUT UART1 ;

 LD A,03H ;

 OUT UART3,A ;

 JMP FINIS ;TO RETURN

;***
;

; FILE NOT THERE, GIVE ERROR MESSAGE AND RETURN

 LXI D,OPNMSG

 CALL MSG
 JMP FINIS ;TO RETURN

;

OPENOK: ;OPEN OPERATION OK, SET BUFFER INDEX TO END

 MVI A,80H

 STA IBP ;SET BUFFER POINTER TO 80H

; HL CONTAINS NEXT ADDRESS TO PRINT

 LXI H,0 ;START WITH 0000

;

;

FINIS:

; END OF DUMP, RETURN TO CCP

; (NOTE THAT A JMP TO 0000H REBOOTS)

 CALL CRLF

 LHLD OLDSP

 SPHL

; STACK POINTER CONTAINS CCP'S STACK LOCATION

 RET ;TO THE CCP

;

;

; SUBROUTINES

;

BREAK: ;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)

 PUSH H! PUSH D! PUSH B; ENVIRONMENT SAVED

 MVI C,BRKF

 CALL BDOS

 POP B! POP D! POP H; ENVIRONMENT RESTORED

 RET

;

PCHAR: ;PRINT A CHARACTER

 PUSH H! PUSH D! PUSH B; SAVED

 MVI C,TYPEF

 MOV E,A

 CALL BDOS

 POP B! POP D! POP H; RESTORED

 RET

;

CRLF:

 MVI A,CR

 CALL PCHAR

 MVI A,LF

 CALL PCHAR

 RET

;

;

PNIB: ;PRINT NIBBLE IN REG A

 ANI 0FH ;LOW 4 BITS

 CPI 10

 JNC P10

; LESS THAN OR EQUAL TO 9

 ADI '0'

 JMP PRN

;

; GREATER OR EQUAL TO 10

P10: ADI 'A' - 10

PRN: CALL PCHAR

 RET

;

PHEX: ;PRINT HEX CHAR IN REG A

 PUSH PSW

 RRC

 RRC

 RRC

 RRC

 CALL PNIB ;PRINT NIBBLE

 POP PSW

 CALL PNIB

 RET

;

MSG: ;PRINT GENERIC MESSAGE

; D,E ADDRESSES MESSAGE ENDING WITH "$"

 MVI C,PRINTF ;PRINT BUFFER FUNCTION

 CALL BDOS

 RET

;

;

GNB: ;GET NEXT BYTE

 LDA IBP

 CPI 80H

 JNZ G0

; READ ANOTHER BUFFER

;

;

 CALL DISKR

 ORA A ;ZERO VALUE IF READ OK

 JZ G0 ;FOR ANOTHER BYTE

; END OF DATA, RETURN WITH CARRY SET FOR EOF

 STC

 RET

;

G0: ;READ THE BYTE AT BUFF+REG A

 MOV E,A ;LS BYTE OF BUFFER INDEX

 MVI D,0 ;DOUBLE PRECISION INDEX TO DE

 INR A ;INDEX=INDEX+1

 STA IBP ;BACK TO MEMORY

; POINTER IS INCREMENTED

; SAVE THE CURRENT FILE ADDRESS

 LXI H,BUFF

 DAD D

; ABSOLUTE CHARACTER ADDRESS IS IN HL

 MOV A,M

; BYTE IS IN THE ACCUMULATOR

 ORA A ;RESET CARRY BIT

 RET

;

SETUP: ;SET UP FILE

; OPEN THE FILE FOR INPUT

 XRA A ;ZERO TO ACCUM

 STA FCBCR ;CLEAR CURRENT RECORD

;

 LXI D,FCB

 MVI C,OPENF

 CALL BDOS

; 255 IN ACCUM IF OPEN ERROR

 RET

;

DISKR: ;READ DISK FILE RECORD

 PUSH H! PUSH D! PUSH B

 LXI D,FCB

 MVI C,READF

 CALL BDOS

 POP B! POP D! POP H

 RET

;

; FIXED MESSAGE AREA

SIGNON: DB 'FILE TOOL VERSION 2.0$'

OPNMSG: DB CR,LF,'NO INPUT FILE ON DISK$'

; VARIABLE AREA

IBP: DS 2 ;INPUT BUFFER POINTER

OLDSP: DS 2 ;ENTRY SP VALUE FROM CCP

; STACK AREA

 DS 64; ;RESERVE 32 LEVEL STACK

STKTOP:

;

 END

APPENDIX B
; BAUD RATE PROGRAM, CHANGES UART BAUD RATE ON THE FLY

;

BDOS EQU 0005H ;DOS ENTRY POINT

CONS EQU 1 ;READ CONSOLE

TYPEF EQU 2 ;TYPE FUNCTION

PRINTF EQU 9 ;BUFFER PRINT ENTRY

BRKF EQU 11 ;BREAK KEY FUNCN (TRUE IF CHAR RDY)

OPENF EQU 15 ;FILE OPEN

READF EQU 20 ;READ FUNCTION

URTDIV
EQU
06H
;19200 BAUD SETPOINT = 6
;

FCB EQU 5CH ;FILE CONTROL BLOCK ADDRESS

BUFF EQU 80H ;INPUT DISK BUFFER ADDRESS

;

;
UART REGISTER ADDRESS STRUCTURE FOR 16C550

UART0: EQU 68H ;DATA IN/OUT REGISTER

UART1: EQU 69H ;RX STATUS

UART2: EQU 6AH ;INTERRUPTS REG

UART3: EQU 6BH ;LINE CONTROL

UART4: EQU 6CH ;MODEM CONTROL

UART5: EQU 6DH ;LINE STATUS

UART6: EQU 6EH ;MODEM STATUS

UART7: EQU 6FH ;SCRATCH REGISTER

;
UART REGISTERS BY FUNCTION

;
MOSTLY READ OR WRITE, SOME READ & WRITE

URHR
EQU
68H
;DATA RECEIVE REG

UTHR
EQU
68H
;TRANSMIT DATA REG

UIER
EQU
69H
;INTERRUPT ENABLE REG

UFCR
EQU
6AH
;FIFO CONTROL REG

UISR
EQU
6AH
;INTERRUPT STATUS REG

ULCR
EQU
6BH
;LINE CONTROL REG

UMCR
EQU
6CH
;MODEM CONTROL REG

ULSR
EQU
6DH
;LINE STATUS REG

UMSR
EQU
6EH
;MODEM STATUS REG

USPR
EQU
6FH
;SCRATCH REG

UDLL
EQU
68H
;DIVISOR LOWER BYTE

UDLM
EQU
69H
;DIVISOR UPPER BYTE

; NON GRAPHIC CHARACTERS

CR EQU 0DH ;CARRIAGE RETURN

LF EQU 0AH ;LINE FEED

;

; FILE CONTROL BLOCK DEFINITIONS

FCBDN EQU FCB+0 ;DISK NAME

FCBFN EQU FCB+1 ;FILE NAME

FCBFT EQU FCB+9 ;DISK FILE TYPE (3 CHARACTERS)

FCBRL EQU FCB+12 ;FILE'S CURRENT REEL NUMBER

FCBRC EQU FCB+15 ;FILE'S RECORD COUNT (0 TO 128)

FCBCR EQU FCB+32 ;CURRENT/NEXT RECORD NUMBER (0-127)

FCBLN EQU FCB+33 ;FCB LENGTH

;

 ORG 100H

;

; SET UP STACK

START:
LXI H,0H
;CLEAR HL THEN ADD IN ENTRY SP FROM CCP

 DAD SP
;ENTRY STACK POINTER IN HL FROM THE CCP

 SHLD OLDSP
;SET SP TO LOCAL STACK (FINIS RESTORES)

STACK:
LXI SP,STKTOP ;JUST ABOVE END OF BAUD RATE UTIL CODE

SMESG:
LXI
D,SIGNON;REMIND US WHICH UTILITY THIS IS

CALL
MSGS
;MESSAGE SEQUENCER CODE

; UART DATA RETRIEVE, GET BAUD RATE VIA READING DIV REGS

UTEST:
MVI
A,0C3H
;LOAD SOME DATA INTO SCRATCH REGISTER

OUT
USPR
; SAVE IT TO HARDWARE REGISTER

STA
SCRCH1
; SAVE IT TO MEMORY

XRA
A
; CLEAR ACCUM FOR READBACK CHECK

IN
USPR
; ORIGINAL REGISTER VALUE RETURNED?

STA
SCRCH2
; STORE VALUE WE THINK WILL BE THE SAME

UTGET:
MVI
A,80H
;DLAB ON TO ALLOW READ OF DIVISOR REGS

OUT
ULCR
; DLAB "ON" VIA LINE CONTROL REGISTER

XRA
A
; CLEAR ACCUM BEFORE LOADING DATA

RBAUD:
IN
UDLL
; READ DIVISOR (LSB)

STA
DIVRG2

MOV
E,A

IN
UDLM
; READ DIVISOR (MSB)

STA
DIVRG1

MOV
D,A

NODLAB:
MVI
A,03H
;DLAB OFF LOCKS DIV REG ACCESS

OUT
ULCR
; WRITE CONTROL REGISTER ACCESS LOCK

INREGS:
IN
ULCR
;DATA BITS, STOP BIT, PARITY STATUS

STA
LINER
; SAVE THE LINE CONTROL REGISTER VALUE

IN
UFCR
; READ IN THE FIFO CONTROL REGISTER

STA
FIFOR
; STORE THE CONTENTS OF FCR

; START OF UART SETUP, SET BAUD RATE VIA DIV REGS

INITU:
MVI
A,80h
; UNLOCK DLAB TO WRITE DIVISOR REGS

OUT
ULCR
; TURN ON DLAB FOR DIV REG
SBAUD:
MVI
A,06h
; DIVISOR FOR DESIRED BAUD RATE

OUT
UDLL
; SET DIVISOR (LSB)

MVI
A,00h
;

OUT
UDLM
; SET DIVISOR (MSB)

; SET LCR TO DEFAULT: LOCK DLAB AND SET CONFIG
SCONF:
MVI
A,03h
; DLAB OFF, 8 DATA, 1 STOP, NO PARITY

OUT
ULCR
; LOAD CONFIGURATION

; SET MCR TO DEFAULT: SET HW FLOW CONTROL VIA MCR
SFLOW:
MVI
A,03h
; DTR + RTS BOTH FORCED TO LOW STATE

OUT
UMCR
; LOAD FLOW CONTROL HANDSHAKE TO MCR

; SET FCR TO DEFAULT: ENABLE FIFO CONTROL OF DATA
SFIFO:
MVI
A,07h
; ENABLE & RESET Tx & Rx FIFOS

OUT
UFCR
; EXECUTE FIFO CONTROL BY FCR

XRA
A
;

IN
UFCR
; CONFIRM CORRECT WRITTEN CONFIG

STA
FIFORG
;

XRA
A
;

IN
USPR
;RETRIEVE SCRATCH REG DATA

STA
SCRCH3
; SEE IF STILL THERE

;
JMP
FINIS
;BAIL OUT ON DONE (FALL THROUGH HERE)
;

FINIS:
;BAIL-OUT PATH WITHOUT USING REBOOT VIA WARM/COLD BOOT
; RETURN TO CCP AVOIDS REBOOT RESET BAUD RATES TO ORIGINAL

; (NOTE THAT A JMP TO 0000H REBOOTS ALL HARDWARE)

 CALL CRLF
;SPACE AFTER MESSAGES PRINTED HERE

 LHLD OLDSP
;ADDRESS OF CCP STACK

 SPHL

;SP CONTAINS CCP'S STACK LOCATION

 RET ;TO THE CCP

;

;

; MORE OR LESS STANDARD AND USEFUL SUBROUTINES

;

BREAK: ;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)

 PUSH H! PUSH D! PUSH B; ENVIRONMENT SAVED

 MVI C,BRKF

 CALL BDOS

 POP B! POP D! POP H; ENVIRONMENT RESTORED

 RET

;

PCHAR: ;PRINT A CHARACTER

 PUSH H! PUSH D! PUSH B; SAVED

 MVI C,TYPEF

 MOV E,A

 CALL BDOS

 POP B! POP D! POP H; RESTORED

 RET

;

CRLF:
;STANDARD SKIP LINE ROUTINE

 MVI A,CR

 CALL PCHAR

 MVI A,LF

 CALL PCHAR

 RET

;

PNIB: ;PRINT NIBBLE IN REG A

 ANI 0FH ;LOW 4 BITS

 CPI 10

 JNC P10

; LESS THAN OR EQUAL TO 9

 ADI '0'

 JMP PRN

;

; GREATER OR EQUAL TO 10

P10: ADI 'A' - 10

PRN: CALL PCHAR

 RET

;

PHEX: ;PRINT HEX CHAR IN REG A

 PUSH PSW

 RRC

 RRC

 RRC

 RRC

 CALL PNIB ;PRINT NIBBLE

 POP PSW

 CALL PNIB

 RET

;

MSGS: ;PRINT ERROR/SIGNON MESSAGE

; D,E ADDRESSES MESSAGE ENDING WITH "$"

 MVI C,PRINTF ;PRINT BUFFER FUNCTION

 CALL BDOS

 RET

;

GNB: ;GET NEXT BYTE

 LDA IBP

 CPI 80H

 JNZ G0

;

; READ ANOTHER BUFFER

 CALL DISKR

 ORA A ;ZERO VALUE IF READ OK

 JZ G0 ;FOR ANOTHER BYTE

; END OF DATA, RETURN WITH CARRY SET FOR EOF

 STC

 RET

;

G0: ;READ THE BYTE AT BUFF+REG A

 MOV E,A ;LS BYTE OF BUFFER INDEX

 MVI D,0 ;DOUBLE PRECISION INDEX TO DE

 INR A ;INDEX=INDEX+1

 STA IBP ;BACK TO MEMORY

; POINTER IS INCREMENTED

; SAVE THE CURRENT FILE ADDRESS

 LXI H,BUFF

 DAD D

; ABSOLUTE CHARACTER ADDRESS IS IN HL

 MOV A,M

; BYTE IS IN THE ACCUMULATOR

 ORA A ;RESET CARRY BIT

 RET

;

SETUP: ;SET UP FILE

; OPEN THE FILE FOR INPUT

 XRA A ;ZERO TO ACCUM

 STA FCBCR ;CLEAR CURRENT RECORD

;

 LXI D,FCB

 MVI C,OPENF

 CALL BDOS

; 255 IN ACCUM IF OPEN ERROR

 RET

;

DISKR: ;READ DISK FILE RECORD

 PUSH H! PUSH D! PUSH B

 LXI D,FCB

 MVI C,READF

 CALL BDOS

 POP B! POP D! POP H

 RET

;

; FIXED MESSAGE AREA

SIGNON: DB 'BAUD RATE CHANGE VER 1.0$'

; VARIABLE AREA

IBP: DS 2 ;INPUT BUFFER POINTER

OLDSP: DS 2 ;ENTRY SP VALUE FROM CCP

DIVBR: DS 2
;VALUE STORED IN DLL/DLM REGISTERS

;

FIFOR:
DS 1
;VALUE STORED IN FIFO CONTROL REGISTER

SCRCH1: DS 1
;VALUE WRITTEN TO SCRATCH REGISTER

SCRCH2: DS 1
;VALUE WRITTEN TO SCRATCH REGISTER

SCRCH3: DS 1
;VALUE WRITTEN TO SCRATCH REGISTER

LINER: DS 1
;VALUE STORED IN LINE CONTROL REGISTER

;

DIVRG2: DS 1
;

DIVRG1: DS 1
;

FIFORG: DS 1
;

; STACK AREA

 DS 64; ;RESERVE 32 LEVEL STACK

STKTOP:

;

 END

