AP-28A

APPENDIX A (Continued)
P2 CONNECTOR PIN ASSIGNMENT OF OPTIONAL BUS SIGNALS

(COMPONENT SIDE) (CIRCUIT SIDE)
PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION
1 GND Signal GND 2 GND Signal GND
3 5VB +5V Battery 4 5vB +5V Battery
5 Reserved 6 VCCPP +5V Pulsed Power
7 -5 VB -5V Battery 8 -5 VB -5V Battery
9 Reserved 10 Reserved
1 12 VB +12V Battery 12 12VB +12V Battery
13 PFSR/ Power Fail Sense Reset 14 Reserved
15 -12 VB ~12V Battery 16 -12VB -12V Battery
17 PFSN/ Power Fail Sense 18 ACLO AC Low
19 PFIN/ Power Fail Interrupt 20 MPRO/ Memory Protect
pal GND Signal GND 22 GND Signal GND
23 +15V +15V 24 +15V +15V
25 ~15V -15V 26 -15V -15V
27 PAR1/ Parity 1 28 HALT/ Bus Master HALT
29 PAR2/ Parity 2 30 WAIT/ Bus Master WAIT STATE
31 \ 32 ALE Bus Master ALE
33 34 Reserved
35 36 Reserved
37 38 AUX RESET/ Reset switch
39 40
40 42
43 > Reserved 44
45 46
47 48
49 50 Reserved
51 52 ’
53 54
55 56
57 58
59) 60
Notes:

1. PFIN, on slave modules, if possible, should have the option of connecting to INTO/ on P1.
2. Allundefined pins are reserved for future use.

All Mnemonics © Intel Corporation 1978

A-199

AP-28A

APPENDIX B

BUS TIMING SPECIFICATIONS SUMMARY

Parameter Description Minimum Maximum Units
tBCY Bus Clock Period 100 D.C. ns
tBwW Bus Clock Width 0.35tgCY 0.65tpCY
ISKEW BCLK/skew 3 ns
tPD Standard Bus 3

Propagation Delay
tAS Address Set-Up Time 50 ns
(at Slave Board)
tps Write Data Set 50 ns
Up Time
tAH Address Hold Time 50 ns
tDHW Write Data Hold Time 50 ns
toxL Read Data Set 0 ns
Up Time To XACK
IDHR Read Data Hold Time 0 85 ns
tXAH Acknowledge Hold 0 65 ns
Time
IXACK Acknowledge Time 0 tTouT ns
tcMD Command Pulse 100 tTouT ns
Width
ip (nhibit Delay 0 100 ns
(Recommend < 100 ns)
tXACKA Acknowledge Time of tiap+ 50 ns tTouT
of an Inhibited Slave
tXACKB Acknowledge Time of 1.5 tTouT us
an Inhibiting Slave
YAD Acknowledge Disable 0 100 ns
from Inhibit (An (arbitrary)
internal parameter on
aninhibited slave;
used to determine
tXACKA Min.)
taiz Address to Inhibits 100 ns
High delay
UINTA INTA/ Width 250 ns
{CSEP Command Separation 100 ns

A-200

AP-28A

APPENDIX B (Continued)

BUS TIMING SPECIFICATIONS SUMMARY

Parameter Description Minimum Maximum Units

'BREQL +BCLK/ to BREQ/ 0 35 ns
Low Delay

tBREQH 1BCLK/ to BREQ/ 0 35 ns
High Delay

tBPRNS BPRN/ to +BCLK/ 22 ns
Setup Time

tBUSY BUSY/ delay 0 70 ns
from iBCLK/

tBUSYS BUSY/ to iBCLK/ 25 ns
Setup Time

tBPRO +BCLK/ to BPRO/ 0 40 ns
(CLK to Priority Out)

tBPRNO BPRN/ to BPRO/ 0 30 ns
(Priority in to Out)

tCBRO 1BCLK/ to CBRQ/ 0 60 ns
(CLKto Common
Bus Request)

tCBRQS CBRQ/ to +BCLK/ 35 ns
Setup Time

tcpm Central Priority 0 tBCY-'BREQ
Moduie Resolution -2tpp
Delay (Parallel -tBPRNS
Priority) -tSKEW

tcey C-clock Period 100 110 ns

tcw C-clock Width 0.35tccy 0.65tccy ns

UNIT INIT/Width 5 ms

{INITS INIT/ to MPRO/ 100 ns
Setup Time

tPBD Power Backup 0 200 ns
Logic Deiay

tPFINW PFIN/ Width 25 ms

tMPRO MPRO/ Delay 2.0 25 ms

taACLOW ACLO/ Width 30 ms

tPFSRW PFSR/ Width 100 ns

tTouT Timeout Deiay 5 o] ms

tDCH D.C. Power Supply 3.0 ms
Hold from ALCO/

tpcs D.C. Power Supply 5 ms
Setup to ACLO/

A-201

AP-28A

APPENDIX C
BUS DRIVERS, RECEIVERS, AND TERMINATIONS
Driver 1,3 Receiver 2,3 Termination
Bus Signals Location Type lo. loH Co Location L IiH Ci |Location| Type | R Units
Minma Min,s Maxp Maxms Max,a Maxpt
DATO/~DATF/ | Masters TRI 16 -2000 300 | Masters -08 125 18 |tplace | Pullup |22 K@
(16 lines) and Slaves and Slaves
ADRO/-ADRB/, | Masters TRI 16 -2000 300 | Slaves -08 125 18 [1place | Pullup |22 K@
BHEN/
(21 lines)
MRDC/.MWTC/ | Masters TRI 32 -2000 300 | Slaves -2 125 18 | tplace | Pullup 1 KQ
(Memory;
memory-
mapped |/0)
IORC/.IOWC/ | Masters TRI 32 -2000 300 |Slaves -2 125 18 |1place |Pullup | 1 K@
(110)
XACK/ Slaves TRI 32 -2000 300 |Masters -2 125 18 |1place | Pullup [510 @
INH1/,INH2/ Inhibiting ocC 16 — 300 |[!Inhibited -2 50 18 |tplace |Pullup | 1 K@
Slaves Slaves
(RAM, PROM,
ROM, Memory-
Mapped 1/0)
BCLK/ 1 place T 48 -3000 300 | Master -2 125 18 |Mother- | To+5V {220 Q
(Pgaslerus) board ToGND (330 Q
BREQ/ Each TTL 5 400 60 Central 2 50 18 ant(ai Pullup 1 KQ
Master Priority Priority
Module Module
(notreq)
BPRO/ Each TTL 5 400 60 | NextMaster -6 80 18 | (notrea)
Master in Serial
Priority
Chain at
its BPRN/
BPRN/ Parallel: TTL 5 -400 300 | Master -2 50 {not req)
Central
Priority
Module
Serial:Prev
Masters
BPRO/
BUSY/, CBRQ | All Masters o.cC. 32 — 300 | AllMasters -2 50 18 | tplace | Pullup | 1 K@
INIT/ Master o.c. 32 — 300 | Al -2 50 18 |1place | Pulup |22 KR
CCLK! 1 place TTL 48 -3000 300 | Any -2 125 18 | Mother- | To +5v] 220 @
board ToGND| 330 @
INTA/ Masters TRI 32 -2000 300 | Slaves -2 1B 18 |1place | Pullup | 1 K@
(interrupting
110)
INTO/=INT7/ Slaves 0.C. 16 — 300 | Masters -1.6 40 18 |1place | Pullup | 1 K@
(8lines)
PFSR/ User's Fron TTL 16 -400 300 | Staves, -16 4 18 |1place | Pullup | 1 K@
Panel? Masters
PFSN/ Power Back TTL 16 -400 300 | Masters ~1.6 40 16 | tplace | Pullup | 1 K@
Up Unit
ACLO Power 0.C. 16 -400 300 | Slaves, -1.6 40 18 | 1place | Puliup 1 K@
Supply Masters
PFIN/ Power Back-| 0.C. 16 -400 300 | Masters -16 40 18 [1place | Pullp | 1 K@
Up Unit
MPRO/ Power Back-| TTL 16 -400 300 | Slaves -16 40 18 | t1place | Pullup | 1 K@
Up Unit Masters

A-202

| AP-28A

APPENDIX C (Continued)
BUS DRIVERS, RECEIVERS, AND TERMINATIONS

Driver 1,3 Receiver 2,3 Termination
Bus Signals Location Type oL lod Co Location i Il] Cy |Location| Type [R Units
Minma Min,s Maxp(Maxma Max,a Maxpg
Aux Reset/ User's Switch - - — | Masters -2 50 18 | None
Front to GND

Panel?

Notes:
1. Driver Requirements

10H = High Output Current Drive
loL = Low Output Current Drive
Co = Capacitance Drive Capability
TRl = 3-State Drive

0.C. = Open Collector Driver

TTL = Totem-pole Driver

2. Receiver Requirements

iy = HighInputCurrent Load
it = LowInput Current Load
Ci = Capacitive Load

3. TTL low state must be > -0.5v but < 0.8v at the receivers
TTL high state must be > 2.0v but < 5.5v at the receivers

4. For the iSBC 80/10 and the iSBC 80/10A use only a 1K pull-up resistor to +5v for BCLK/ and CCLK/ termination.

A-203

AP-28A

APPENDIX D
BUS POWER SPECIFICATIONS

Standard (P1)

Optional (P2)

Analog Power

Battery Power Backup

Ground +5 +12 -12 +15 -15 +5 +12 -12 -5
Mnemonic GND + 5V + 12V - 12V | +15V - 15V + 5B +12B -128 -58
Bus Pins P1+12 P1+34, P1+78 P1+479 |P2+23 P2+25 |P2+34, P2+11, P2+15 P2-78
11,12, 56,81, 80 24 26 56 12 16
75,76 82,83,
85,86 84
Nominal Output | Ref. + 5.0V +120V -120V| +150V -15.0V| +5.0V + 120V -120V -50V
Tolerance from
Nominal' Ref. +5% +5% +5% +3% +3% +5% +5% +5% *5%
Ripple
(Pk-Pk)? Ref. 50 mV 50 mV 50mV |10 mV 10 mV |50 mV 50 mV 50 mV 50 mV
Transient
Response 500 us 500us 500 us | 100 us 100 us {500 us 500 us 500 us 500 us
Time?
Transient
Deviation* +10% +10% +10% | £10% +10% | £+10% +10% *10% +10%
NOTES:

state inftuences.

W N

. As measured over any bandwidth not to exceed 0 to 500 kHz.
. As measured from the start of a load change to the time an output recovers within = 0.1% of final voitage
. Measured as the peak deviation from the initial voltage

. Tolerance is worst case, including initial voltage setting line and load effects of power source, temperature drift, and any additional steady

A-204

AP-28A

0.25 X 45°
2PLACES

(>

8.109 DIA
3HOLES

0.06R
TYP

APPENDIX E
MECHANICAL SPECIFICATIONS

12.00 +0.005

11.500

COMPONENT SIDE .
b +0.005

6.75 REF

I N Sy 1]

: 0.55 0.30
3.080 pe— 0.390

+0. 4570 —— o 0,015 + 0.005 x 45°
€767 :0.008 CHAMFER ALL 2PLACES
CONNECTOR EDGES
0.040 x 45°

BOARD THICKNESS: 0.062

[> EJECTOR TYPE: SCANBE #5203
MULTIBUS CONNECTOR: 86-PIN, 0.156 SPACING

5. BUSDRIVERS AND RECEIVERS SHOULD BE LOCATED AS CLOSE AS POSSIBLE TO
COC VFBOTE43D00A1 THEIR RESPECTIVE MULTIBUS PIN CONNECTIONS
VIKING 2VH43/1ANES

6. BOARD SPACING: 0.6
‘> AUXILIARY CONNECTOR: 60-PIN, 0.100 SPACING

CDC VPBO1BI0D0CAT 7. COMPONENT HEIGHT: 0.4
TIH311130 .
AMP PES. 14559 8. CLEARANCE ON CONDUCTOR NEAR EDGES: 0.050

A-205

AP-28A

APPENDIX F

NOISH3A 118-91/8 J1LYINIHIS I1dINVYX3 NOISIA JAVIS w.SNEILTINN

Vol gwe | T aws
ﬂ usﬁs;mz_]
r NOSEW 119/] 49-90 <- /21N
B TURNG NS WS .
Jui Qy
a5 417 }—-
5 v
JAY SHIMOS F90E ® .
< ELC A i
dwps P0Shi 7L
(SINM v2) S140a O/1 R INT 2000 N— L3-20 /21
SNl
) GV e
eS| (11 s‘ma e 0 . TATX
3090 (eI o 290y I
Lram ke [93)
aﬁﬁ e MIec r
S - /Q¥ Tdd { — ..
(SIN DY) SR AT] 3wrwmw: LINT —
LU
B S 2w Tel? WIS - - T [ra01]
VSR O o | 2oy e LAVSAINX .
- < 2 =
La-2a A\|)J2 Wi 290 e w . vasvL v . S
Tde N3N ey & a |H’ H
wyav Stz =]
IR v B e
/N3 Qg —— - - - a5
ay - i
©3QY
o —— | | ey
< I oy
WS =
713 Tdd 1:\\\\:“%@.% TN I
v AN 2
b (T
/ITREN NG 9 obg
(S \LYQ QVO5-N0)
90 — 2
. (1
L | 20 ki Y
" AR . 2 Wy oS a7 - [ew]
v | ¥] 4
-, v 28V —— o———4L ' ¥ e [ouY]
JLINE fo g C¥0v — ¢ !
/% IND 9 1 vOSWL 4 ¥
7N [B
ISINL ALY 2 Is FINE]
=< /v INT =¥ PR YOSWL 4 W s
(/oM 20 v < N
J7INT © < g YoSWL ¥ 5y
e L ol
| 79 INT [Py YaSWL Y ”
_ N vOSKL_AV vs.w_x ,_4
e)
oSWL 1N
LINT —- <l NT

&
70 INL

\d
BQLIINNQY SN

A-206

AP-28A

APPENDIX G

NOISH3A 118-8 DILYWIHOS I1dWVX3 NDIS3A JAVIS ..SNAILTINW

To e | [
M.!S... sl @
AN Lk) 3000 | s
NOSEY 1199 b
TAWN NS I,]
ot
) ?
v vies
sne Senacs vk J .

/MINI Qg —— ay
. , [. 19-0Q v @ —=> o)
(SIMNT 2} S v < o .A_TA. UND ppers a9
rb—— <2y
i] L e 7AW
1Q-00 — - .
ram 12 ~ U EXT]
,I.H rem T !
Q9148 [—]
. T . _ _ s
(SINIF) S VT - Dl i —— DIND | o | R
™ RN : H e ~
Y | oa - 0wy ; 9 | Lamsizer |
oo - - W taw | eon Jomd N v - :
T L w— o« 13 vamy o ,
-~ N a 5L W ¥
FIE yr] - | L
- waov @ q -
r e
' LYY P < b
SN O : YL) ", 4
Q¥ * “ T 4 !
oM - - . I i
/M 1da - =T I i .
Sl — B - '
It B s
o T T M 005w, | —
o P
SINIS | pycpr ~ 't !
Q0P | “BHUNT 20w —
(SR LY QAVR-NO) = o _— 3 L‘ _
00 — e EREIE S ~ 10w —(T |
m) !
T wwnon i
2 mg- — sy
LOWOINT | " LATASINT ! .
" [-
! | 1 - o - .
CUINT W 05 Lo do 3} Qv _ P
o | E -
T\E@I.a . L NS —ar 73k Bt : §r$|||' r[ruﬂ
75N i 72 2 F i
SN 20w, oW -
=< ™ 59 e 3} - . W G —— [
(N 50 IBS) — b ! voSWL - .l
fZANT 1550 - - . — S
L [E 150!
7N /M) —— A vasWL Y.
72 INT s i v . N 7T
TSR - L)
_ o ~ |/
— — > e N1

BOLYINNCT SOl

A-207/A-208

AP-43

APPLICATION

NOTE

intel

November 1978

A-209

AP-43

I. INTRODUCTION

The iSBC 957 Intellec—iSBC 86/12 Interface and
Execution Package contains the hardware and soft-
ware required to interface an iSBC 86/12 Single
Board Computer with an Intellec Microcomputer
Development System. The iSBC 957 package gives
the 8086 user the capability to develop software on
an Intellec System and then debug this software on
an iSBC 86/12 board using a program download
capability and an interactive system monitor. The
8086 user has all the capabilities of the Intellec sys-
tem at his disposal and has the powerful iSBC
86/12 system monitor commands to use for
debugging 8086 programs.

The iSBC 86/12 board is an Intel 8086 based proc-
essor board which, in addition to the processor,
contains 32K bytes of dual port RAM, sockets for
up to 16K bytes of ROM/EPROM, a serial 1/0
port, 24 parallel I/0O lines, 2 programmable
counters, 9 levels of vectored priority interrupts,
and an interface to the MULTIBUS™ system bus.
The iSBC 957 package consists of monitor EPROMs
for the iSBC 86/12 board, Loader software for the
Intellec system, four (4) cable assemblies, assorted
line drivers and terminators, and signal adapters.
The iSBC 957 package provides the capability of
downloading and uploading program and data
blocks between an iSBC 86/12 board and an Intellec
system. In addition, monitor commands and
displays may be input and viewed from the Intellec
system console. The iSBC 957 package, when used
with the iSBC 86/12 board and an Intellec Micro-
computer Development System, provides the user
with the capability to edit, compile or assemble,
link, locate, download, and interactively debug
programs for the 8086 processor. The iSBC 957
package and the iSBC 86/12 board form an ex-
cellent ‘“‘execution vehicle” for users developing
software for the 8086 processor regardless of
whether the users are 8086 component users or
iSBC 86/12 board users. Using the iSBC 957 pack-
age 8086 programs may be debugged at the full 5
MHz speed of the processor. The recommended
hardware for the execution vehicle is an iSBC 660
system chassis with an 8 card slot backplane and
power supply, an iSBC 032 32K byte RAM memory
board, the iSBC 957 package, and the iSBC 86/12
board.

This application note will describe how the iSBC
957 package may be used to develop and debug
8086 programs. First a description of the iSBC
86/12 board will be presented. Readers familiar

with the iSBC 86/12 board may want to skip this
section. Next follows a detailed description of the
iSBC 957 package and the iSBC 86/12 system
monitor commands. A program example of a
matrix multiplication routine will then be presented.
This example will contain both assembly language
and PL/M-86 procedures. The steps required to
compile, assemble, link, locate and debug the
program code will be explained in detail. A typical
debugging session using the iSBC 86/12 system
monitor will be presented.

II. THE iSBC™ 86/12 SINGLE BOARD
COMPUTER

The iSBC 86/12 Single Board Computer, which is
a member of Intel’s complete line of iSBC 80/86
computer products, is a complete computer system
on a single printed-circuit assembly. The iSBC 86/
12 board includes a 16-bit central processing unit
(CPU), 32K bytes of dynamic RAM, a serial com-
munications interface, three programmable parallel
170 ports, programmable timers, priority interrupt
control, MULTIBUS control logic, and bus expan-
sion drivers for interface with other MULTIBUS-
compatible expansion boards. Also included is dual
port control logic to allow the iSBC 86/12 board
to act as a slave RAM device to other MULTIBUS
masters in the system. Provision is made for user
installation of up to 16K bytes of read only mem-
ory. Figure | contains a block diagram of the iSBC
86/12 board and in Appendix A is a simplified
logic diagram of the iSBC 86/ 12 board.

Central Processing Unit

The central processor for the iSBC 86/12 board is
Intel’s 8086, a powerful 16-bit H-MOS device. The
225 sq. mil chip contains 29,000 transistors and has
a clock rate of 5SMHz. The architecture includes
four (4) 16-bit byte addressable data registers, two
(2) 16-bit memory base pointer registers and two (2)
16-bit index registers, all accessed by a total of 24
operand addressing modes for complex data han-
dling and very flexible memory addressing.

Instruction Set —The 8086 instruction repertoire
includes variable length instruction format (in-
cluding double operand instructions), 8-bit and 16-
bit signed and unsigned arithmetic operators for
binary, BCD and unpacked ASCII data, and iter-
ative word and byte string manipulation functions.
The instruction set of the 8086 is a functional
superset of the 8080A/8085A family and with

A-210

AP-43

24 PROGRAMMABLE
PARALLEL 110 LINES

$

DRIVER!
TERMINATOR
INTERFACE

RS232C
COMPATIBLE
DEVICE

SERIAL

CONTROL <
INTERFACE DEVICE

R5232C
INTERFACE

AN

N\

4

32K x8
RAM

J
INTERRUPT /‘7
SELECTOR | =
POWER FAIL JUMPERS) R ——
INTERRUPT &_‘ i
DUAL-PORT i
BUS ‘ o 7
\ N
i X
PRO! E
16K x 8 PROGRAMMABLE TWO [PRO € 13
OUAL PORT AOM EPROM 8086 - INTERRUPT PROGRAMMABLE COMMUNICATIONS Jgd * BAUD RATE PERIPHERAL
CONTROLLER (BOCKETS) cPy CONTROLLER TIMERS, 'NLE;‘;“CE GENERATOR INTERFACE

R

I

T (O

ON-BOARD INTERNAL BUS

[

)

1 T

MULTIBUS/
MULTIMASTER
INTERFACE

I

MULTIBUS

-

Figure 1. iISBC™ 86/ 12 Single Board Computer Block Diagram

available software tools, programs written for the
8080A /8085A can be easily converted and run on
the 8086 processor.

Architectural Features — A 6-byte instruction queue
provides pre-fetching of sequential instructions and
can reduce the 1.2 u sec minimum instruction cycle
to 400 nsec by having the instruction already in the
queue.

The stack oriented architecture facilitates nested
sub-routines and co-routines, reentrant code and
powerful interrupt handling. The memory expan-
sion capabilities offer a 1 megabyte addressing
range. The dynamic relocation scheme allows ease
in segmentation of pure procedure and data for
efficient memory utilization. Four segment registers
(code, stack, data, extra) contain program loaded
offset values which are used to map 16-bit addresses
to 20-bit addresses. Each register maps 64K-bytes at
a time and activation of a specific register is con-
trolled explicitly by program control and is also
selected implicitly by specific functions and
instructions.

Bus Structure

The iSBC 86/12 board has an internal bus for
communicating with on-board memory and 1/0
options, a system bus (the MULTIBUS) for refer-
encing additional memory and 1/0 options, and
the dual-port bus which allows access to RAM
from the on-board CPU and the MULTIBUS Sys-
tem Bus. Local (on-board) accesses do not require
MULTIBUS communication, making the system
bus available for use by other MULTIBUS masters
(i.e. DMA devices and other single board com-
puters transferring to additional system memory).
This feature allows true parallel processing in a
multiprocessor environment. In addition, the MUL-
TIBUS interface can be used for system expansion
through the use of other 8- and 16-bit iSBC com-
puters, memory and I/0 expansion boards.

RAM Capabilities

The iSBC 86/12 board contains 32K-bytes of
dynamic read/write memory. Power for the on-
board RAM and refresh circuitry may be option-
ally provided on an auxiliary power bus, and

A-211

AP-43

memory protect logic is included for RAM battery
backup requirements. The iSBC 86/12 board con-
tains a dual port controller which allows access to
the on-board RAM from the iSBC 86/12’s CPU
and from any other MULTIBUS master via the
system bus. The dual port controller allows 8- and
16-bit accesses from the MULTIBUS System Bus
and the on-board CPU transfers data to RAM over
a 16-bit data path. Priorities have been established
such that memory refresh is guaranteed by the on-
board refresh logic and that the on-board CPU has
priority over MULTIBUS requests for access to
RAM. The dual-port controller includes independent
addressing logic for RAM access from the on-board
CPU and from the MULTIBUS system bus. The
on-board CPU will always access RAM starting
at location 00000H. Address jumpers allow on-
board RAM to be located starting on any 8K-byte
boundary within a 1 megabyte address range for
accesses from the MULTIBUS system bus. In con-
junction with this feature, the iSBC 86/12 board
has the ability to protect on-board memory from
MULTIBUS access to any contiguous 8K-byte
segments. These features allow multi-processor
systems to establish local memory for each proces-
sor and shared system (MULTIBUS) memory con-
figurations where the total system memory size
(including local on-board memory) can exceed 1
megabyte without addressing conflicts.

EPROM/ROM Capabilities

Four sockets are provided for up to 16K-bytes of
non-volatile read only memory on the iSBC 86/12
board. Configuration jumpers allow read only
memory to be installed in 2K, 4K, or 8K increments.

On-board ROM is accessed via 16 bit data paths.
System memory size is easily expanded by the
addition of MULTIBUS compatible memory boards
available in the iSBC 80/86 family.

Parallel 1/0 Interface

The iSBC 86/12 board contains 24 programmable
parallel I/0 lines implemented using the Intel
8255A Programmable Peripheral Interface. The
system software is used to configure the I/0 lines
in any combination of unidirectional input/output
and bidirectional ports.

Therefore, the 1/0 interface may be customized to
meet specific peripheral requirements. In order to
take full advantage of the large number of possible
1/0 configurations, sockets are provided for inter-
changeable I/0 line drivers and terminators.
Hence, the flexibility of the 1/0 interface is further

enhanced by the capability of selecting the appro-
priate combination of optional line drivers and
terminators to provide the required sink current,
polarity, and drive/termination characteristics for
each application. The 24 programmable 1/0 lines
and signal ground lines are brought out to a 50-pin
edge connector that mates with flat, woven, or
round cable.

Serial 1/0

A programmable communications interface using
the Intel 8251A Universal Synchronous/Asyn-
chronous Receiver/ Transmitter (USART) is con-
tained on the iSBC 86/12 board. A software
selectable baud rate generator provides the USART
with all common communication frequencies. The
USART can be programmed by the system soft-
ware to select the desired asynchronous or syn-
chronous serial data transmission technique (in-
cluding IBM Bi-Sync). The mode of operation (i.e.,
synchronous or asynchronous), data format, con-
trol character format, parity, and baud rate are all
under program control. The 8251A provides full
duplex, double buffered transmit and receive capa-
bility. Parity, overrun, and framing error detection
are all incorporated in the USART. The RS232C
compatible interface on each board, in conjunction
with the USART, provides a direct interface to
RS232C compatible terminals, cassettes, and asyn-
chronous and synchronous modems. The RS232C
command lines, serial data lines, and signal ground
line are brought out to a 26 pin edge connector that
mates with RS232C compatible flat or round cable.
The iSBC 530 teletypewriter adapter provides an
optically isolated interface for those systems re-
quiring a 20 mA current loop. The iSBC 530
adapter may be used to interface the iSBC 86/12
board to teletypewriters or other 20 mA current
loop equipment.

Programmable Timers

The iSBC 86/ 12 board provides three independent,
fully programmable 16-bit interval timers/event
counters utilizing the Intel 8253 Programmable In-
terval Timer. Each counter is capable of operating
in either BCD or binary modes. Two of these
timers/counters are available to the systems de-
signer to generate accurate time intervals under
software control. Routing for the outputs and gate/
trigger inputs of two of these counters is jumper
selectable. The outputs may be independently
routed to the 8259A Programmable Interrupt Con-
troller and to the 1/0 line drivers associated with

A-212

AP-49

the 8255A Programmable Peripheral Interface, or
may be routed as inputs to the 8255A chip. The
gate/trigger inputs may be routed to 1/0 termin-
ators associated with the 8255A or as output con-
nections from the 8255A. The third interval timer
in the 8253 provides the programmable baud rate
generator for the iSBC 86/12 RS232C USART
serial port. In utilizing the iSBC 86/12, the systems
designer simply configures, via software, each timer
independently to meet system requirements. When-
ever a given time delay or count is needed, soft-
ware commands to the programmable timers/event
counters select the desired function.

The contents of each counter may be read at any
time during system operation with simple read
operations for event counting applications, and
special commands are included so that the contents
can be ready ‘‘on the fly”’.

MULTIBUS™ and Multimaster Capabilities

The MULTIBUS system bus features asynchronous
data transfers for the accommodation of devices
with various transfer rates while maintaining maxi-
mum throughput. Twenty address lines and sixteen
separate data lines eliminate the need for address/
data multiplexing /demultiplexing logic used in
other systems, and allow for data transfer rates up
to 5 megawords/sec. A failsafe timer is included in
the iSBC 86/12 board which can be used to gener-
ate an interrupt if an addressed device does not
respond within 6 msec.

Multimaster Capabilities —The iSBC 86/12 board
is a full computer on a single board with resources
capable of supporting a great variety of OEM sys-
tem requirements. For those applications requiring
additional processing capacity and the benefits of
multiprocessing (i.e., several CPUs and/or con-
trollers logically sharing system tasks through
communication over the system bus), the iSBC 86/
12 board provides full MULTIBUS arbitration
control logic. This control logic allows up to three
iSBC 86/12 boards or other bus masters, including
iSBC 80 family MULTIBUS compatible 8-bit single
board computers, to share the system bus in serial
(daisy chain) priority fashion, and up to 16 masters
to share the MULTIBUS with the addition of an
external priority network. The MULTIBUS arbitra-
tion logic operates synchronously with a MULTI-
BUS clock (provided by the iSBC 86/12 board or
optionally provided directly from the MULTIBUS
System Bus) while data is transferred via a hand-
shake between the master and slave modules. This

allows different speed controllers to share resources
on the same bus, and transfers via the bus proceed
asynchronously. Thus, transfer speed is dependent
on transmitting and receiving devices only. This
design prevents slow master modules from being
handicapped in their attempts to gain control of the
bus, but does not restrict the speed at which faster
modules can transfer data via the same bus. The
most obvious applications for the master-slave
capabilities of the bus are multiprocessor configur-
ations, high speed direct memory access (DMA)
operations, and high speed peripheral control, but
are by no means limited to these three.

Interrupt Capability

The iSBC 86/12 board provides 9 vectored interrupt
levels. The highest level is the NMI (Non-Maskable
Interrupt) line which is directly tied to the 8086
CPU. This interrupt cannot be inhibited by soft-
ware and is typically used for signalling catastrophic
events (e.g., power failure).

The Intel 8259A Programmable Interrupt Con-
troller (PIC) provides vectoring for the next eight
interrupt levels.

The PIC accepts interrupt requests from the pro-
grammable parallel and serial 1/0 interfaces, the
programmable timers, the system bus, or directly
from peripheral equipment. The PIC then deter-
mines which of the incoming requests is of the
highest priority, determines whether this request is
of higher priority than the level currently being
serviced, and, if appropriate, issues an interrupt to
the CPU. Any combination of interrupt levels may
be masked, via software, by storing a single byte
in the interrupt mask register of the PIC. The PIC
generates a unique memory address for each in-
terrupt level. These addresses contain unique
instruction pointers and code segment offset values
(for expanded memory operation) for each interrupt
level. In systems requiring additional interrupt
levels, slave 8259A PIC’s may be interfaced via the
MULTIBUS system bus, to generate additional
vector addresses, yielding a total of 65 unique
interrupt levels.

Interrupt Request Generation — Interrupt requests
may originate from 16 sources. Two jumper select-
able interrupt requests can be automatically gener-
ated by the programmable peripheral interface.

Two jumper selectable interrupt requests can be
automatically generated by the USART when a
character is ready to be transferred to the CPU or a
character is ready to be transmitted.

A-213

AP-43

A jumper selectable request can also be generated
by each of the programmable timers. Eight addi-
tional interrupt request lines are available to the
user for direct interface to user designated peripher-
al devices via the system bus, and two interrupt
request lines may be jumper routed directly from
peripherals via the parallel 1/O driver/terminator
section.

Power-Fail Control

Control logic is also included to accept a power-fail
interrupt in conjunction with the AC-low signal
from the iSBC 635 Power Supply or equivalent.

Expansion Capabilities

Memory and 1/0 capacity may be expanded and
additional functions added using Intel MULTIBUS
compatible expansion boards. High speed integer
and floating point arithmetic capabilities may be
added by using the iSBC 310 high speed mathe-
matics unit. Memory may be expanded to 1 mega-
byte by adding user specified combinations of
RAM boards, EPROM boards, or combination
boards. Input/output capacity may be increased by
adding digital 1/0O and analog I/0 expansion
boards. Mass storage capability may be achieved
by adding single or double density diskette con-
trollers. Modular expandable backplanes and card-
cages are available to support multiboard systems.

III. THE iSBC™ 957 PACKAGE

The iSBC 957 Intellec—iSBC 86/12 Interface and
Execution Package extends the software develop-
ment capabilities of the Intellec Microcomputer
Development systems to the Intel 8086 CPU. Pro-
grams for the 8086 may be written in PL/M-86
and/or assembly language and compiled or as-
sembled on the Intellec system. These programs
may then be downloaded from an Intellec ISIS-II
disk file to the iSBC 86/ 12 board for execution and
debug. The programs will execute at the full 5 MHz
clock rate of the 8086 CPU with no speed degrada-
tion caused by the iSBC 957 hardware or software.
Special communication software allows transparent
access to the powerful interactive debug commands
in the iSBC 86/12 monitor from the Intellec con-
sole terminal. These debug commands include
single-step instruction execution, execution with
breakpoints, memory and register displays, memory
searches, comparison of two memory blocks and
several other commands. After a debugging session,
the debugged program code may be uploaded from
the iSBC 86/12 board to an Intellec ISIS-II disk
file.

The iSBC 957 Intellec—iSBC 86/12 Interface and
Execution Package consists of the following:

a. Four Intel 2716 EPROMs which contain the sys-
tem monitor program for the iSBC 86/ 12 board.

b. An ISIS-II diskette containing loader software
for execution in the Intellec which provides for
communications between the user or an Intellec
ISIS-II file and the iSBC 86/12 board. Also in-
cluded on the diskette are a library of routines
for system console 1/0.

c. Four cable assemblies used for transmitting com-
mands, code and data between the iSBC 86/12
board and the Intellec system.

d. An iSBC 530 adapter assembly which converts
serial communications signals from current loop
to RS232C.

e. Line drivers and terminators used for the iSBC
86/12 paralilel ports.

f. A small printed circuit board which is plugged
into an iSBC 86/12 receiver/terminator socket
and is used when program code is downloaded
or uploaded using the parallel cable.

iSBC™ —Intellec™ Configurations

There are two distinct functional configurations for
the iSBC 957 package; one configuration for the
Intellec Series II, Models 220 or 230 development
systems and another for the Intellec 800 series
development systems.

Intellec Series II System Configurations

When used with Intellec Series II Model 220 or
230 systems, a set of cables are used to connect the
serial I/0O port edge connector on the iSBC 86/12
board and the SERIAL 1 output port on the Intellec
system. This configuration is shown in Figure 2.
How this system functions is explained in the fol-
lowing paragraphs.

The SERIAL 1 port on the Intellec Series II Model
220 or 230 system is an RS232 port which is de-
signed for use with a data terminal. This port may
be used on the Intellec system for interfacing to
RS232 devices such as CRT terminals or printers.
The serial ports on the iSBC 86/12 board and the
Intellec systems are connected as shown in the
Figure 2. The flat ribbon cable connected to the
iSBC 86/12 board has an edge connector for con-
necting to the board on one end and a standard
RS232 connector on the other end. The second
cable, the RS232 Up/Down Load cable, has an
RS232 connector on each end. This cable, however,

A-214

AP-43

INTELLEC SERIES I}
MODEL 220, 230

W

u)

Al

SERIALI/O
PORT

/SENAL PORT 1

iSBC 86/ 12

OEM R$232-C
CABLE

=~ RS232 UP/ DOWN LOAD
CABLE

Figure 2. Intellec™ Series || Model 220, 230—iSBC™ 86/ 12 Configuration

is not a standard cable with the RS232 signals bussed
between identically numbered pins on each of the
connectors. The schematic for the cable is shown in
Figure 3. Note that the TXD (transmit data) and
the RXD (receive data) and the RTS (ready to send)
and the CTS (clear to send) signals have been
crossed. This is done because both the Intellec system
and the iSBC 86/ 12 board are configured to act as
data sets which are communicating with data
terminals. Swapping these signals permits the units
to communicate directly with no modifications to
the Intellec or iSBC 86/12 systems themselves.

FGD
TXD
RXD
RTS

(FRAME GROUND)
(TRANSMIT DATA)
(RECEIVE DATA)
(READY TO SEND)
(CLEAR TO SEND)
(SIGNAL GROUND)

CcTs

wjlals|w|n] -
~wlola|lw|m] -

SGD

Figure 3. Intellec™—iSBC™ 86/12 RS232
UP/DOWN LOAD Cable

The software in the Intellec system accepts characters
output from the iSBC 86/12 board through the
Intellec SERIAL 1 port. The software then outputs
these characters on the CRT monitor built into the
Intellec Series I Model 220 or 230. In a similar
fashion, characters input from the Intellec key-

board are passed down the serial link to the iSBC
86/12 monitor program. The integrated CRT
monitor and keyboard on the Intellec system then
becomes the “‘virtual terminal” of the iSBC 86/12
monitor program. If this were the only function of
the iSBC 957 package, there would be no real
benefit to the user. However, when the ‘‘virtual
terminal®’ capability is combined with the capa-
bility to download and upload program code and
data files between the Intellec ISIS-II file system
and the iSBC 86/12 board, a very powerful soft-
ware development tool is realized. The software in
the Intellec system must examine the commands
which are input from the keyboard and in the case
of the LOAD and TRANSFER commands (see
later sections for details on monitor commands),
the software must open and read or write ISIS-II
disk files.

Transfer rates using Intellec Series II Model 220 or
230 system are 9600 baud when transferring hexa-
decimal object files to or from a disk file and 600
baud when transferring commands between the
iSBC 86/12 board and the CRT monitor and key-
board. With a 9600 baud transfer rate, it is pos-
sible to load 64K bytes of memory in about four
minutes.

Intellec 800 System Configurations

The iSBC 957 package may be used with the In-
tellec 800 system in four different configurations.
These four configurations are determined by two

A-215

AP-43

variables. The first variable is whether the iSBC
86/12 board is connected to the Intellec 800 TTY
port or to the Intellec 800 CRT port. The second
variable is whether or not a parallel cable is used
for uploading and downloading hexadecimal object
files. Figures 4A and 4B illustrate the four
configurations.

In Figure 4A, the configuration shows the TTY
port of the Intellec 800 system connected to the
iSBC 86/12 serial port using two cables and an
iSBC 530 teletypewriter adapter. The TTY port of
the Intellec 800 system is designed for using a
teletypewriter as the Intellec console device. To use
this port for communication with the iSBC 86/12
board, the current loop TTY signal must be con-
verted to an RS232 compatible voltage signal. This
function is performed by the iSBC 530 adapter.

The cable which connects the Intellec 800 system to
the iSBC 530 adapter performs a function similar
to the RS232 Up/Down Load cable described
above. A schematic for this cable and all other
components of the iSBC 957 package are included
with the delivered product.

The transfer rate for both commands and data
when the TTY port is connected to the iSBC 86/12
board is 110 baud. This means to download even
moderately sized programs would require large
amounts of time, several minutes or even hours.
However, much faster times may be achieved by
using the parallel ports of the iSBC 86/12 board
and the Intellec system for downloading program
files. This parallel port used on the Intellec 800
system is the output port labeled PROM which is
normally used with the Universal Prom Pro-

PARALLEL
4A LOAD CABLE
(OPTIONAL)

PROM
PORT

INTELLEC
MDS 800
SYSTEM

CRT PORT

PARALLEL I/ 0
PORT

SERIAL |/ 0
PORT

TO RS232-C

TERMINAL iSBC 86 /12

BOARD

OEM RS232.C
\ CABLE
iS8C 530

4B

INTELLEC
MDS 800
SYSTEM

SERIAL
1 /0 PORT

PARALLEL
LOAD CABLE
(OPTIONAL)

iSBC 86/12

TOTTY
TERMINAL ;} /

OEM RS232-C
CABLE

N\ R$232 UP / DOWNLOAD
CABLE

Figure 4A, 4B. Intellec™ 800—iSBC™ 86/ 12 Configurations

A-216

AP-43

grammer. A cable is connected between the In-
tellec PROM port and the parallel 1/0 port, J1 of
the iSBC 86/ 12 board. Parallel port B of the iSBC
86/12 board is used for the 8-bit byte transfers
from the Intellec system to the iSBC 86/12 board,
port A is used for the byte transfers from the iSBC
86/12 board to the Intellec system and port C is
used for controlling the byte transfers. A special
status adapter piggyback board must be inserted
into a receiver / terminator socket of the iSBC 86/12
board. This status adapter circuit is required to
provide the necessary handshaking signals from the
iSBC 86/12 parallel ports to the Intellec PROM
port.

The transfer rate achieved when downloading and
uploading hexadecimal object files with the parallel
cable is approximately 1,000 bytes per second. The
time required to load 64K bytes of memory is
approximately 22 minutes.

Figure 4B shows a configuration with the Intellec
800 CRT port connected to the serial port of the
iSBC 86/12 board. The TTY port of the Intellec
800 system is connected to a teletypewriter or some
other current loop device to act as a system con-
sole. The optional parallel load cable is also shown.
The cables used for this configuration are the same
as those used with the Intellec Series II Configur-
ations. Command transfer rates require 110 baud
because the TTY port of the Intellec 800 system is
used for communicating with the console device.
However, hexadecimal object files can be loaded at
9600 baud since this operation uses only the Intellec
to iSBC 86/12 RS232 link.

It is also possible to download files with the parallel
cable, this mode being somewhat faster than the
serial download mode (22 minutes versus four
minutes for 64K bytes of memory). Table I con-
tains a summary of the command and memory
transfer rates for each of the Intellec-iSBC 86/12
configurations.

Comparing the Intellec 800 configurations shown in
Table 1 and in Figures 4A and 4B it should be
noted:

1. Using the TTY port (Figure 4A) of the Intellec
800 system for communications with the iSBC
86/12 board (essentially) requires installation of
the parallel cable and jumper modifications for
downloading and uploading files, and thus, pre-
vents the use of the parallel ports for other I/0
functions.

. Using the CRT port (Figure 4B) of the Intellec

800 system for communication with the iSBC
86/12 board provides for a fast serial download
capability, thus freeing the parallel ports for
other uses. However, this configuration requires
a teletypewriter or a CRT capable of accepting
a current loop input signal as the Intellec system
console.

Table 1

COMMAND AND MEMORY TRANSFER RATES FOR
INTELLEC —iSBC™ 86/12 CONFIGURATIONS

INTELLEC
SERIES 11 220/230 INTELLEC 800 INTELLEC 800
SERIAL PORT TTY PORT CRT PORT
TOISBCB86/12 TOISBC86/12 TOISBC 86/12
Effective
Command Rate 600 Baud 110 Baud 110 Baud*
Load / Transfer
Rate
Serial 9600 Baud 110 Baud 9600 Baud
Paraliel N/A 1K bytes/sec** 1K bytes/sec**
Approximate Time
to load 64K bytes
of memory
Serial 4 minutes 5 hours 4 minutes
Parallel N/A 2.5 minutes 2.5 minutes

*The actual baud rate of the Intellec—iSBC 86/ 12 link is 9600 baud, but the effective
command rate is determined by the slower Intellec — console serial fink.

**Transmission rate over the parallel link is determined by the speed of the two processors
and is approximately 1K bytes per second.

IV. THE iSBC 957—iSBC 86/12 MONITOR
PROGRAM

The iSBC 86/12 monitor program is an EPROM
resident program which facilitates debugging of
user written programs. The monitor program used
in the iSBC 86/12 board with the iSBC 957 pack-
age is the same monitor program written to inter-
face the iSBC 86/12 directly to an RS232C data
terminal. When interfaced directly to a terminal,
the iSBC 86/12 board functions in a stand-alone
environment communicating directly with the user
via the data terminal. A user may use the monitor
for entering small programs in hexadecimal format,
executing a program, examining registers and
memory contents, etc.

To use the monitor program with an Intellec system,
the proper cables must be installed and the iSBC
957 Loader program must be loaded into Inteliec
memory and executed. The Loader program is resi-
dent on a file named SBC861, and when executed,
the Loader outputs a sign-on message. Next, the
iSBC 86/12 monitor program must be started and
the baud rate of the iSBC 86/12 to Intellec serial
communications link must be determined. This is
done by pressing the RESET switch on the chassis

A-217

AP-43

Table 2
MONITOR COMMAND LIST

COMMAND FUNCTION AND SYNTAX
L Load Hex Loads hexadecimal object file from Intellec into iSBC
Object File 86/12 memory using serial (S) or paraliel (P} mode.
L{SIP} < filename{ <bias addr>l<cr>
T Transfer Hex Transfers blocks of iSBC 86/12 memory to Intellec as

Object File a hex object file using serial (S) or paraliel (P) mode.
T(X) {SlP) ,<Start addr > <end addr>,<filename>
[,<exec gddr>)<er>

E Exit Exits the loader program and returns to ISIS.
E<cr>
N Single Step Executes one user program instruction.
Ni<addr>],[[<addr>],[*<cr>
G Go Transfers control of the 8086 CPU to the user program
with up to 2 optional breakpoints.
Gl<start addr>]|,<break 1 addr>
(,<break 2 addr>])<cr>
S Substitute Displays/modifies memory locations in byte or word
Memory format.
S[W)<addrs, [lnew contents),]*<cr>
X Examine/Modify Displays/modifies 8086 CPU registers.

Register Xl<reg>}[{<new contents>],1*<cr>

o

Display Memory Displays coritents of a memory block in byte or word
format.

D{W|<start addr>(,<end addr>)<cr>
M Move Moves contents of a memory block.
Mcstart addr>,<end addr>,< destination addr><cr»

C Compare Compares two memory blocks.
Cc<start addr>,<end addr>, <destination addr><cr>

F Find Searches a memory block for a byte or word constant.
FIW)< start addr>,< end addr>,<data><cr>

H Hex Arithmetic Performs hexadecimal addition and subtraction.
H<data 1>,<data 2><cr>

| Port Input Inputs and displays byte or word data from input
port.

I[W)<port addr>,(,]*<cr>

o

Port Output Outputs byte or word data to output port.

O[W]l<port addr>,<data>{,<data>*<cr>

Syntax conventions used in the command structure are as follows:
[A] indicates that “A" is optional
[A]* indicates one or more optional iterations of A"’
 indicates that “B" is a variable
{AIB) indicates A" or “B"
<cr> indicates a carriage return is entered
Numeric arguments can be expressed as a number, the contents of a register,

or the sum or difference of numbers and register contents. Thus, addresses
and data can be expressed as follows:

addr 1= [<expr>:]<expr>
expr :i= <numbers|<registers|<expr> {+|»} <number>|
<expr> {+|~ <register>

register ::= AX|BX|CX|DX|SP|BP|SI|DI|CS|DS|SS|ES|IP|FL
number <digits|< digit><number >
digit ::= 0|1(2)3]4)5|6(7|8/9/A|B|C|DI|E|F

Numeric fields within arguments are entered as hexadecimal numbers. The
valid range of numerical values is from 0000-FFFF. Larger numbers may be
entered, but only the last four digits {or two in the case of byte values) are
significant. Leading zeros may be omitted.

An address argument consists of a sagment value and an offset value separ-
ated by a colon (:). If a segment value is not specified, the default segment
value is the CS register value.

containing the iSBC 86/12 board and typing two
““U”’s on the Intellec console. The ASCII uppercase
character U has a binary pattern of alternating ones
and zeros, the iSBC 86/ 12 monitor uses this pattern
to determine the baud rate of the serial link. After
the baud rate has been determined, the monitor
program outputs a sign-on message to the console.
An example of loader program execution and
monitor program initialization is shown below (user
entered characters are underlined).

:F1:SBC861

ISIS-IT iSBC 86/12 LOADER, Vx.x

(user resets iSBC 86/ 12 board and types two “U’’s)
iSBC 86/12 MONITOR, Vy.y

The monitor prompts with a period ““.”” when it is
ready for a command. The user can then enter a
command file, which consists of a one- or two-
character command followed by zero, one, or more
arguments. The command may be separated from
the first argument by an optional single space; a
single comma is required as a delimiter between
arguments. The command line is terminated by a
carriage return or a comma depending on the com-
mand, and no action takes place until the command
terminator is sensed. The user can cancel a com-
mand before entering the command terminator by
pressing any illegal key (e.g., rubout or Control-X).

Table 2 contains a summary of the loader and
monitor commands. These commands will not be
explained in detail; instead, the next section of the
application note will show examples of using these
loader and monitor commands. The iSBC 957
User’s Guide referenced at the front of this docu-
ment does, however, contain a complete description
of each of the monitor and loader commands.
Table 3 contains a list of the 8086 hardware registers
and abbreviations used by the monitor program.

Table 3
8086 CPU REGISTERS
REGISTER NAME ABBREVIATION
Accumulator AX
Base BX
Count CcX
Data DX
Stack Pointer SP
Base Pointer BP
Source Index S
Destination Index Dt
Code Segment Cs
Data Segment DS
Stack Segment SS
Extra Segment ES
Instruction Pointer P
Flag FL

AP-43

FFFFFy
ON-BOARD 39 INTR7 9Cy
EPROM MONITOR PROGRAM
(8K bytes! F 38 INTR 6 98,
£000 M
37 INTR 5 94y
36 INTR 4 9, 82594 PIC
35 INTR 3 8c, VECTORS
k") INTR 2 88y
. . 3 INTR 1 84y
! AVAILABLE '
© 8000y |------ USER - = — === 32 INTR O 80y
AREA 2
.
. RESERVED
ot FOR
ot FUTURE !
L USE BY '
L INTEL .
! .
1€o N
N- H .
ON-BOARD INITIAL USER STACK
RAM 130, .
(32K bytes) H .
MONITOR .
DATA 5
AREA
A0y 4 interrupt on Overflow 104
3 One-Byte Intr Instruction Cy
INTERRUPT 2 Non-Maskable Intr 84
VECTORS
0-39 1 Single Step 4
0 Divide by Zero Oy
Oy

Figure 5. Memory Map of iSBC™ 86/12 Memory With Monitor Program

Figure 5 contains a memory map of the iSBC
86/12 memory with the monitor program. Note
that the monitor uses the top 8K bytes of memory
for its program code and the first 384 bytes of
memory (locations @ hex to 17F hex) for monitor
and user stack, data and interrupt vectors. When
the monitor program is reset, the segment registers,
the IP and the flags are set to @; and the SP is set
to @1CPH allowing 64 bytes for the user’s stack. If
64 bytes is not sufficient for the user’s application
program, the SP should be set to some other value.
The monitor program sets the single-step, one-byte
instruction trap and non-maskable interrupt vectors
to monitor entry points. The monitor also sets the
8259A Priority Interrupt Controller to fully nested
mode with level @ at the highest priority and all
interrupts unmasked. The eight interrupt vector
addresses for the 8259A are also set to addresses in
the monitor. User programs may change the 8259A
interrupt vectors to interrupt service routine ad-
dresses within the user programs; it is not necessary
for users to program the 8259A chip directly. When
an interrupt occurs, control passes to either the
monitor or directly to user code depending on the
address stored in the vector location. When the
monitor responds to an interrupt, it acknowledges
the interrupt and displays the interrupt level, CS
and IP register values and next instruction byte on

the system console (e.g., | =3 @ 100:230F FS5).

When a user requests a breakpoint with a “G”
command, the monitor inserts the single byte
instruction trap instructions (INT 3) in the location
where the breakpoint is requested. It is also possible
for the user to code an INT 3 instruction in his
program. When a user coded INT 3 instruction is
executed, the monitor will be re-entered and a line
with the format @<CS Value>:<IP Value> <In-
struction byte > will be displayed (e.g., @ 1200:3FO2
F5).

Included on the diskette with the Loader program
are two libraries containing I/0O routines for the
console. The library files are named SBCIOS.LIB
and SBCIOL.LIB; they contain similar routines.
The routines in SBCIOS.LIB are written to be
called with intrasegment subroutine calls, a PL/M-
86 module compiled with the ‘‘small”’ control
generates this type of call. The routines in
SBCIOL.LIB are written to be called with interseg-
ment subroutine calls, a PL/M-86 module com-
piled with either the “‘medium” or ‘large’’ control
generates this type of call.

The console input output routines, CI and CO,
contained in the library should be used when per-
forming character input and output on the console.
Example PL/M-86 calls to the two routines are:

A-219

AP-43

CI:

PROCEDURE BYTE EXTERNAL;
END CI;

CO: PROCEDURE (X) EXTERNAL;

DECLARE X BYTE;
END CO;

DECLARE INPUT$CHAR,

OUTPUTS$CHAR BYTE;

INPUTSCHAR = CI;

CALL CO(OUTPUT$CHAR);

General Comments on Use of the iSBC 957 Package

1

- If the iSBC 86/12 board is reset any time after

the initial baud rate search, it is not necessary to
reload the iSBC 957 Loader program or to
download the program code a second time to the
iSBC 86/12 board. It is only necessary to re-
establish the communications link by typing two
““U”’s for the baud rate search.

- The iSBC 86/12 board should not be plugged

into an available card slot in an Intellec chassis;
a separate chassis should be used. There are at
least three reasons for this:

a. There is only one RESET signal available on
the Intellec system bus. Thus, each processor
may not be reset independently. This means
that the iSBC 86/12 board cannot be reset
without re-booting the ISIS-II operating sys-
tem and restarting the iSBC 957 Loader.

b. The Intellec system uses five of the eight avail-
able interrupts on the system bus. This severely
restricts the range of interrupts available to
the iSBC 86/12 board. Also, the iSBC 86/12
board cannot turn-off the interrupt lamps on
the Intellec front panel.

c. The iSBC 86/12 board may address up to 1
Megabyte of memory using a 20 bit address.
Many Intellec systems contain boards which
generate and decode only the low order 16
address bits. For example, the iSBC 016 mem-
ory expansion board and the Intellec 800

monitor PROMs only decode 16 address bits.
Memory expansion above 64K bytes in these
systems is difficult since the boards which de-
code only 16 bits will force “holes” in the
address space above 64K.

. The iSBC 86/12 board is delivered with two

inputs to the 8259A Priority Interrupt Controller
connected. Interrupt request 2 (IR2) is connected
to the counter @ output of the 8253 Program-
mable Interval Timer. IRS is connected to the
INT5/signal of the MULTIBUS System Bus. If
these interrupts are not desired, the wire wrap
jumpers making the connections should be re-
moved from the iSBC 86/12 board. A particular
problem may exist with the counter @ connection
to IR2. If the 8253 counter @ is not specifically
initialized with software, a low frequency square
wave output will exist at counter @#’s output. This
may cause unwanted interrupts when interrupts
are enabled by user programs.

. If the iSBC 86/12 board is used in a system with

expansion boards, it is important that the MUL-
TIBUS bus exchange pins be properly jumpered.
For example, if the iSBC 86/12 board is used
with an iSBC 032 expansion memory board in a
system, the BPRN/ MULTIBUS pin for the
iSBC 86/12 board should be grounded.

In addition, if any interrupts are used with the
iSBC 86/12 board the BPRN/ pin must be
grounded. This is true in both single and mul-
tiple board systems.

. Certain user systems require more than one single

board computer in the system for performing the
functions required by the application. The MUL-
TIBUS System Bus has been specifically designed
to permit multiple CPU boards to communicate
and to share system resources. However, de-
bugging systems with multiple CPUs has always
posed somewhat of a problem. The iSBC 957
package provides a solution to this problem. The
serial cable which connects the iSBC 86/12
board to the Intellec system may be removed
after the program has been downloaded to the
iSBC 86/12 board. A console CRT may then be
connected directly to the iSBC 86/12 board and
the monitor program may be used to debug the
program running on the board. Other iSBC
86/12 boards may also be downloaded from the
Intellec system and then switched to their own
local terminals. An 8-bit processor board, such
as the iSBC 80/30 board, may also be included

A-220

AF-49

in the system and ICE-85™ may be used for
debugging the iSBC 80/30 program concurrently
with the iSBC 86/12 programs. Using this
scheme, it is possible to debug a system which
has several CPU boards by setting breakpoints
and using other debugging features on each of
the individual CPUs.

V. MATRIX MULTIPLICATION EXAMPLE

To illustrate how the iSBC 957 package can be used
to assist in the writing and debugging of 8086 pro-
grams on the iSBC 86/12 board, an example pro-
gram of a matrix multiplication will be presented.
The example chosen has been intentionally kept
simple and straightforward. The emphasis of this
section will be to document the steps required to as-
semble, compile, link, locate and debug software
using an Intellec system, the iSBC 957 package and
the iSBC 86/12 board. Part of the example will be
written in 8086 assembly language and part in PL/
M-86.

The main program is written in PL/M-86. The
main program first performs some initialization
and the matrix multiplication, then the program
calls an assembly language procedure (subroutine),
a PL/M-86 procedure and the console output pro-
cedure CO supplied in the 1/0O library on the iSBC
957 diskette. A flow diagram for the example
program is shown in Figure 6.

Explanation of the Program Code

The program code is contained in three software
modules EXECUTIONSVEHICLE, FIND, and
SBCCO. EXECUTIONSVEHICLE contains the
main program coded in PL/M-86 and the binary
to ASCII conversion procedure BINSDEC$ASC
also coded in PL/M-86. The module FIND con-
tains the assembly language procedure FINDSMX
which searches a matrix for its maximum value.
The module SBCCO resides in the library of con-
sole 1/0 routines supplied with the iSBC 957 pack-
age. The procedure CO will be used from this
library.

The program code for the EXECUTIONSVEHICLE
and FIND modules will be explained in the follow-
ing paragraphs. Appendix B contains compilation
and assembly listings for the two modules; also
contained in Appendix B is a memory and debug
map for the linked modules. The listings contain
circled reference letters (e.g., @) which are referred
to by the code description below. The listings in the
appendix have been printed on fold-out pages so
that they may easily be seen when reading the text.

Initialize
X$ROW & YSROW
Matrices

]

Multiply
Matrices,
store result in
Z$ROW

Find MAX value
in Z$ROW

BINSDECSASC

Convert to
ASCll

Output MAX
value on
terminal using
CO routine

Figure 6.
Flow Diagram of Matrix Multiplication Example

Much of the description given below assumes that
the reader is familiar with the PL/M-86 language
and compiler, the 8086 assembler, and the link and
locate program QRLS86. It is recommended that the
reader have at least a cursory knowledge of these
subjects. The Intel literature for these subjects is
listed near the front of this application note.

The EXECUTIONSVEHICLE Module

@ The first section of the module includes intro-
ductory comments and then statements to de-
clare the matrices, other variables, and pro-
cedures used in the program. Note that the
matrix dimensions are declared using the literals
M, N, and P which are initially set to 6, 5, and
3. Later in this note, other values for M, N,
and P will be used.

The next section of code contains the state-
ments which initialize the two matrices that will
be multiplied X$ROW and YSROW.

As a result of this initialization, the two ma-
trices will contain values as shown in Figure 7.

A-221

AP-43

0 0 0 0 0 o -1 -2
L 0o -1 -2
2 2 2 2 2 0o -1 -2
3 3 3 3 3 0o -1 -2
4 4 4 4 4 o -1 -2
5 5 5 5 §
X$ROW (6X5) Y$ROW (5X3)
Figure 7.

X$ROW and Y$ROW Matrices After Initialization

The next program section performs the matrix
multiplication. The algorithm required to mul-
tiply two matrices X and Y, storing the result in
a third matrix Z is:

n

Zmp = Z Xmi *Yip
i=1
Assuming X to be 6XS matrix and Y a 5X3
matrix then

le = XIIYII +X12 21 + X13Y3| + xldxdl + XISYSI
Thus, the upper left term is equal to the sum of
the products of the top row of the X matrix
times the left column of the Y matrix. The re-
sult that is obtained by multiplying the two
matrices XSROW and YSROW after they are
initialized as explained above, is shown in
Figure 8.

[0 0 o]
0 -5 -10
0 -10 -20
0 -15 -30
0 -2 -4
0 -25 -50

L a
Z$ROW (6X3)

Figure 8. Result of Multiplying the Initialized Matrices

X$ROW and Y$ROW

@ The external assembly language procedure

FINDS$MX is called to determine the maximum
value in the matrix. The procedure is a typed
procedure and returns the maximum value to
the calling program which stores it in the inte-
ger variable MAX.

®

®

The maximum value is then converted to a six
(6) digit ASCII character string by the pro-
cedure BINSDECSASC. The character string is
stored in the array MAX$SASC$SARRAY, which
contains the sign of the number and five (5)
digits for the magnitude.

Finally, the characters “MAX VALUE ="' are
output on the system console followed by the
6 ASCII characters containing the maximum
value. The PL/M-86 built-in procedure SIZE
returns the number of bytes of the array TEXT
as a word value. The PL/M-86 built-in pro-
cedure SIGNED changes the type of the value
from WORD to INTEGER. This is required so
that the type of the arguments in the DO state-
ment agree. The console output procedure CO
is used to output the characters on the system
console.

(© Also contained in the module MATRIX.PLM

is the binary to ASCII conversion procedure
BINSDECS$ASC. The first portion of the code
contains the comments explaining the para-
meters and the calling sequence followed by the
declarations. Note that the address of the array
where the characters are to be stored is passed
to the procedure and that the characters will be
stored in the array using based variables. The
next section of the code stores either a + or —
sign in the first character position of the ASCII
array and stores the absolute value of VALUE
in the variable TEMP. Finally, the binary value
is converted to ASCII using the algorithm
explained in the comments. The MOD operator
returns the remainder of the division by 10. The
UNSIGN built-in procedure is required to
change the type of the expression from INTE-
GER to WORD.

The FIND Module

®

The FIND module contains the assembly lan-
guage procedure FINDMX. The calling se-
quence and the parameters are explained in the
comments at the beginning of the listing. Note
that the label FINDMX has been declared
PUBLIC so the link program can fill in its
address in the CALL statement in the main
program of module EXECUTIONS$VEHICLE.

The FIND module will contain three segments:
a data segment, a stack segment and a code
segment. It will be both convenient and prag-
matic to append these three segments to the
code, data and stack segments created by the

A-222

AP-43

compiler for the EXECUTIONSVEHICLE
module. To accomplish this, the three segments
must be given the same SEGMENT and CLASS
names as those given these segments by the
compiler. The SEGMENT and CLASS names
used by the compiler are CODE, DATA, and
STACK. The GROUP statements are used to
place the segments DATA and STACK in the
group DGROUP and the segment CODE in the
group CGROUP. These group definitions con-
form with the group definitions generated by
the PL/M-86 compiler when the SMALL size
control option is used. A group is a collection
of segments which requires less than 64K bytes
of memory.

The ASSUME directive informs the assembler
that the DS and SS registers will contain the
base address of DGROUP and the CS register
will contain the base address of CGROUP.
This information will be used by the assembler
when constructing machine instructions.

The first segment appearing in the module is
the data segment. The order of the segments is
arbitrary, although it is recommended that the
data segment precede the code segment to mini-
mize forward references to variables which may
cause the assembler to generate longer instruc-
tion codes. The data segment is declared
PUBLIC, aligned on a WORD boundary and
given both a segment and class name of DATA.
Then follows the contents of the segment. In
this particular example, only one word of stor-
age is required. The ENDS directive indicates
the end of the segment.

® Next comes the stack segment which is given
the segment name of STACK, the combine-
type attribute of STACK and the class name of
STACK. The combine-type attribute of STACK
assures that the stack storage required in this
module will be appended to the storage re-
quired in the PL/M-86 compiled modules. Two
bytes of stack are required by the code in this
module, however, the monitor uses 13 words of
stack when breakpoints and interrupts are used.
Therefore, 14 words are reserved for the stack.

Finally comes the code segment. The code seg-
ment has been given a segment name and class
name of CODE and a group name of
CGROUP, and has been declared PUBLIC.
The alignment attribute of BYTE is specified

since it is desired that the code from this
module be appended directly to the code from
other modules without gaps between the code
modules.

The assembly language code follows next. The
code for the procedure must be enclosed be-
tween a pair of PROC, ENDP statements. The
PROC statement is given the label FINDMX
and specified as a NEAR procedure indicating
it will be called with a near (intra-segment)
CALL instruction and not a far (inter-segment)
CALL instruction.

The comments at the beginning of the module
and adjacent to the program statements ex-
plain the function being performed by the
assembly language code.

The SBCCO Module

@ The console output procedure CO is contained
in the object module SBCCO of the library file
SBCIOS.LIB. SBCIOS.LIB is part of the iSBC
957 package 1/0 libraries. The calling sequence
and parameters for CO may be seen in the
external . procedure declaration in the EXE-
CUTION$VEHICLE module.

Compiling the EXECUTIONSVEHICLE
Module

The EXECUTIONSVEHICLE module is stored on
a file named MATRIX.PLM on disk device :F1:.
To compile the module, the following command
line is used:

— PLMS86 :FI:MATRIX.PLM DEBUG

This command line will cause the module stored in
the file :FI:MATRIX.PLM to be compiled. The
object code generated will be stored in a file with
the default name :F1:MATRIX.OBJ and the listing
generated will be stored in a file with the default
name :F1:MATRIX.LST. To override the default
object and listing files, the NOOBJECT and NO-
LIST compiler control switches can be used. File
names for the listing and object files may also be
specified in the command line. The DEBUG com-
piler control switch causes the compiler to generate
extra symbol and line number information which
will be used during debugging of the program. A
listing of the compiled EXECUTION$VEHICLE
module is contained in Appendix B.

To aid in the debugging of the program, the

module was compiled a second time with the fol-
lowing command line:

A-223

AP-43

—PLM86 :F1:MATRIX.PLM NOOBJECT
CODE DEBUG PRINT (:F1:MATRIX.XLS)

This command line specified that no object file is to
be created and a listing file should be stored in the
file :F1:MATRIX.XLS. The CODE compiler con-
trol switch causes the compiler to list the assembly
language statements which the compiler has gener-
ated for each line of PL/M code. The listing stored
in the file MATRIX.XLS is contained in Appendix
C.

Assembly of the FIND Module

The assembly language module FIND is stored on a
file named FIND.ASM, to assemble this module
the following command line is used:

ASMS86 :F1:FIND.ASM DEBUG

This command line will cause the FIND module to
be assembled with the object code stored in the
default file :F1:FIND.OBJ and the listing stored in
the default file :F1:FIND.LST. The listing of the
assembled FIND module is contained in Appendix
B.

Linking and Locating the Object Module

To link and locate the object modules, the QRL86
program will be used. The QRL86 program per-
forms both the linking and the locating of the
object modules in a single step. QRL86 is primarily
designed for the debugging stages of program devel-
opment. Some applications may require the extended
capabilities of the separate LINK and LOCATE
programs when the final link and locate is per-
formed. The command line used to invoke the
QRLS86 program is:

QRL86 :F1:MATRIX.OBJ, :F1:FIND.OBJ,
SBCIOS.LIB ORIGIN (1000H)

This command line will cause QRL86 to link the
code from the three modules and to locate the
resultant absolute object module starting at location
1000 hexadecimal. The iSBC 86/12 monitor uses
the first 180H bytes of memory for the monitor
stack, data and interrupt vectors, 1000H was chosen
as a convenient starting address for the program.
The absolute object code will be stored in a default
file :FI:MATRIX (note no file name extension is
used). By default, the memory and debug maps
which are generated are stored in the file :F1:MA-
TRIX.MPQ and are contained in Appendix B.
The memory map contains the starting ad-
dresses and sizes of the CODE, CONST,
DATA, STACK and MEMORY segments of
the object module. Note that the start address

for the program is specified as (@10¢H, ppp2H)
indicating a CS value of @10pH and an IP
value of @p2H or an absolute value of 1¢@2H.
The first two bytes of the code segment contain
address values which the code generated by the
compiler will use for setting up the DS and SS
registers. The memory map shows the code
segments from the three modules collected into
the group CGROUP. The code segment from
the EXECUTIONSVEHICLE module is given
the segment and class names of CODE and is
put into CGROUP by the PL/M compiler. To
assure that the code segment from the FIND
module is concatenated with the code segment
from the EXECUTION$VEHICLE module the
identical class, segment and group names were
specified in the SEGMENT and GROUP state-
ments in the FIND module. Next, the group
DGROUP is shown in the memory map.
DGROUP contains 4 segments labelled
CONST, DATA, STACK and MEMORY.
Putting all of these segments in the same group
tells the linker that they will all be in the same
64K block of memory. The SMALL size con-
trol option of the compiler, which was invoked
by default, creates CGROUP, DGROUP, and
the segments contained in them.

@ The debug map contains the memory address
of variables, instruction labels and the ad-
dresses of each code line of the PL/M-86
module. Notice that the variable storage labels
have their addresses specified in the format (DS
register value, displacement). For example, the
variable TEMP has an address of DS=@12AH,
displacement = GMPCH or an absolute address
of P136H. Instruction labels and line numbers
use the format (CS register value, IP register
value). Thus, line number six (6) in the module
EXECUTIONSVEHICLE has the address
CS=p1¢¢H, IP=@BSH or §11B5H.

Object to Hex Conversion

Before downloading the program to the iSBC 86/12,

the format of the object module must be converted

from the absolute object module format which

QRLS86 creates to a hexadecimal/ASCII representa-

tion of the object module. This is done using the pro-
gram OH86 with the following command line:

OHB86 :FI:MATRIX TO :FI:MATRIX.HEX
Downloading and Debugging the Program

The hardware configuration used for debugging the
matrix multiplication example program code was

A-224

AP-49

an Intellec Series 11 Model 230 development sys-
tem, the iSBC 957 package, an iSBC 86/12 board,
and an iSBC 660 system chassis. What follows is
the system-user dialog for a typical debugging
session.

The first step required is to bootstrap load the
ISIS-II operating system by hitting the RESET
switch of the Intellec. The Intellec resident loader
software is then loaded and executed. Throughout
the dialog which follows operator entered charac-
ters will be underlined:

1sIs~-II, V3.4
-5BC861

I1SIS-II ISBC 86/12 LOADER, V1.2

To initialize the iSBC 86/ 12 monitor, the user must
hit the RESET switch on the iSBC 660 chassis and
type two ““U”’s on the system console. The monitor
program will output a line on the console when it is
properly initialized.

ISBC 86/12 MONITOR, V1.2

The monitor command ‘X’ is typed to check that
the monitor is properly operating and to examine
the contents of the 8086 registers.

X
AX=00U0 BX=00D4 CX=00P6 DX=0¢¥d SP=01C0 BP=000¢ SI=0000
DI=P@¥Y CS=008¥0 DS=000Y SS=DE0OY ES=0000 1P=0000 FL=0000

To download the hex object file to the iSBC
86/12, the “L” command is used. Because an
Intellec Series 11 Model 230 is being used, a serial
download is specified. The hex file name is
MATRIX.HEX which is resident on disk device
:Fl:.

.LS,:F1:MATRIX,HEX

The “X”’ command is used again to examine the
CPU registers. Note that the monitor has changed
the contents of the CS and IP registers to the value
of the starting address of the program.

X
AX=0000 BX=0¥80 CX=$@09 DX=@¥06¢ SP=01C0 BP=0000 SI=0000
DI=0@@0 CS=010¢ DS=¢998 SS=P0¥P ES=0000 IP=0002 FL=0080

The “D’’ command is next used to display the first
101 bytes of the program code. Unless another seg-
ment register is specified, the display command
assumes all addresses specified are relative to the CS
register. Thus, the code displayed will be from abso-
lute addresses 1000 through 1100. The program code
displayed may be compared with program code gen-
erated by the PL/M-86 compiler shown in Appendix
C, code line 36.

.00, 100
00008 2A 01 FA 2E BE 16 08 9@ BC D2 ¥¥ 8B EC 16 1F FB

@810 C7 66 BE @0 60 00 81 3E 8E 0¥ @5 ¢¥ 7E 63 E9 3C
0020 ¢¢ C7 86 90 @@ 0@ 00 81 3E 90 ¥e 04 00 7E 03 E9
9930 22 00 8B ¢6 SE @0 BY A @¢ F7 E9 8B 36 9¢ 88 D1
2840 E6 89 C3 8B @E 8E @@ 89 83 10 ¢8 81 06 90 60 @1
9059 v@ E9 D3 FF 81 06 BE 00 61 00 E9 BY FF C7 46 8E
0060 00 V¢ ©@ 81 3E 8E @@ 04 00 TE #3 E9 40 ¢0 C7 @6
Vo790 99 @0 ¢P ve 81 3E 96 v 92 68 7E ©3 E9 26 84 88
¥980 06 9¢ 00 F7 D8 53 8B V6 BE 88 BY ¥6 90 F7 E9 8B
9699 36 99 @6 D1 E6 89 C3 59 89 88 4C 00 8l #6 98 09
¢0AQ 01 00 E9 CF FF 31 @6 8E 00 01 8¢ E9 BS5 FF C7 86
¢PBY 92 09 P@ 8@ 81 3F 92 ¥40 82 09 7E @3 EY 8C 06 C7
V0CH 06 8E @@ ©@ 8¢ 81 3E 8E 00 05 @@ 7E @3 E9 72 @0
20D 83 06 8E 8@ BY 96 8@ F7 E9 8B 36 92 @8 Dl E6 89
@OED C3 C7 82 6A @2 9 60 C7 06 90 06 02 90 81 3E 99
@0Fe @0 P4 00 JE 43 E9 41 00 8B 06 8E @8 BY 2A 02 F7
8108 E9

The PL/M-86 compiler ends the main program in
the EXECUTIONSVEHICLE module with a halt
instruction. After execution of the program it is
more desirable to return to the monitor. To ac-
complish this, an INT 3 instruction (code=CC)
will be substituted for the halt instruction (code=
F4) at the address of 1B4H relative to a CS value
of 100H. First the “D”’ command is used to verify
the address of the halt instruction, then the “S”
command is used to change the instruction to an
INT 3 instruction.

.D1B4
01B4 F4

.51B4, F4- CC

To execute the PL/M-86 main program, the “G”
command is used. After the “G” is typed, the
current contents of the IP are output, followed by
the contents of the byte pointed to by the IP. A
new value for the IP or breakpoint addresses may
be specified before a carriage return <CR> is typed.
In this example, only a <CR> is typed.
.G 0002- FA

MAX VALUE = -0@058
@v160:01B5 55

The program executes and outputs the maximum
value of the matrix calculated. The INT 3 instruc-
tion is executed which causes a return to the
monitor. The monitor types out an at-sign (@)
followed by thé CS and IP register values and the
first byte of the instruction following the INT 3
instruction.

The “X’’ command is typed to examine the CPU
registers. Note that the program has set both the SS
and DS registers to B12A. (312AQH is the address
of the DGROUP as shown in the memory map.)

X
AX=#030 BX=80¢5 CX=0¥@A DX=06080 SP=60D@ BP=08D@ SI=0001
DI=0@#6 CS=018@ DS=B12A SS=012A ES=09@0 IP=$1B5 FL=F282

The three matrices are displayed. Note that a word

A-225

AP-43

display has been specified by using the “DW”
Command and that the addresses have been speci-
fied relative to the DS register. The addresses of
X$ROW, YSROW, and ZSROW may be found in
the debug map given by QRLS86. Note that the
values stored in the matrices are the same as those
shown in Figures 8 and 9.

B,

0020 veel ¢eel

0v32 2¥03 2ge3
Gude o004 2005

200¢
veo2
veed
8025

egop
2002
9993
B90s5

oeee
o¢e2
[TI1}
2045

0001 2001
e0e2 aeu2
0004 0004
0oes

LT
e’
604

«DW

004C #0020 FFFF
¢050 FFPE 0008
Y68 FFFF FFFPE
«DW DS:6A,8C
VY6A #0200 Cdoe
8070 0000 FFFB
Y080 FFE2 ¢0@Y

FFFP
vooe

FFFE
FFFF

[1TT]
FFFE

FFFF FFFE ¢00Q

11T
FFF6
FFEC

[X1X)
FFD8

FFFé
LT

FFEC 0vu@
FFE7 FFCE

FFF1

The “G” Command is used to reset the IP register
to the start address of the program (§¢2) and to
specify a breakpoint at address OAEH, which is the
address of statement 57 of the main program.
Statement 57 is the point in the program after the
X$ROW and YSROW matrices have been initial-
ized, but before the matrix multiplication is
performed. After the <CR> is typed, the program
executes until the breakpoint is encountered. At
this point, the monitor outputs a line specifying
the number of the breakpoint, the CS and IP
values and the first byte of the next instruction to
be executed.
.G B1B5- 55 PU2,AE

BR1 @916¢:00AE C7

Next, the single-step capability is used with the
“N” command to execute single instructions. At
any time, CPU registers may be examined or
changed. In this example, the “X’’ command is
used. Execution of succeeding instructions is caused
by typing a comma (,).

N @@AE-~ C7

0¢B4- 81 ,

@0BA- 7E

88BF- C7

3

AX=0018 BX=0@18 CX=FFFE DX=00288 SP=0@D8 BP=00D0 SI=0¥d04

DI=08R6 CS=0180 DS=g12A 5S=012A ES=0409 IP=0@BF FL=F293

.N BEBF- C7 ,

20CS- 81 , ©
08CB- 7E

The contents of the XSROW and YSROW matrices
are examined and changed with the ‘“‘SW’’ (sub-
stitute word) command. If a comma (,) is typed
after the contents of memory are displayed, then
the contents are left unchanged and the next word
of memory is displayed. If a value followed by a
comma or <CR> is entered, then the contents are
changed. If a <CR> is entered, the substitute

sequence is terminated.
J59.0811n, €001~

091E 8001~ 1o

. FREF-
085C FFFE- ,
205E 0000~
0860 FPPF- B4

After the matrices are modified, execution is
resumed with the ““G”’ command. The max value is
output and the INT 3 instruction executed. Finally,
the contents of the 3 matrices are displayed.

.G 80CB- 7E
MAX VALUE = +084060
€¥160:0185 55
.DW DS:18,8
0310 0000 0000
2020 0201 0001
8030 2003 0003
0040 0004 0025
8050 FFFE 2008
8060 2064 FFFE
2078 2000 0051
4080 FFE2 0420

vege
2892
0003
0005
FFFF
[LLL]
FFD8
else

(1211
2002
2003
6o0es
FFFE
FFFF
[X14]
FFD8

[T11]
0892
[I11]
0gYs
goee
FFFE
8ece
(12T

2001
2002
004
0600
FFFE
6eeo
egve
FFCE

2010
eve3
0004
FFFP
[IrT)
[L1)]

FFEC vl20

Y1EQ

Expanding the Example Program’s
Memory Requirements

To illustrate how the iSBC 86/12 board may be
used for executing 8086 programs which require
large amounts of RAM, the example program will
be modified. The matrix dimensions of the example
will be changed from values of 6, 5 and 3 for the
literal symbols of M, N, and P to values of 100,
50, 70. The three matrices will then be of size
100X50, 50X70, and 100X70. The memory re-
quired for these matrices is 15.5K words or 31K
bytes. The data, constant, stack and memory
segments which are contained in the group
DGROUP will now comprise almost 32K bytes of
memory.

The extra memory requirements will be supplied
by using an iSBC 032 board with the iSBC 86/12
board in the iSBC 660 chassis. The iSBC 032 board
is a 32K byte RAM board which is compatible
with both 8- and 16-bit CPU boards. The base
address of the board may be selected anywhere in
a 0 to 1 megabyte range on any 16K byte boundary.
8- or 16-bit data transfers may be selected. The
iSBC 032 board will be jumpered to respond to
addresses in the S12K or 544K address space (20
bit hex address range to 80¢¢¢H to 87FFFH). This
will illustrate the capabilities of the 8086 to access
a 20-bit, 1 megabyte address range.

One other modification is required to the program.
The magnitude of the numbers which would result
from multiplying matrices of this size would great-
ly exceed the capacity of the 16-bit integer storage,
even with the two matrices initialized to the small

A-226

AP-43

values they presently contain. To keep the example
simple, the initialization values will be changed so
all elements of the XSROW matrix are set equal to
2 and all elements of the YSROW matrix are set
equal to 3. The result of the multiplication should
make all the elements of ZSROW equal to 300.

The modified lines of program code are shown
below.

/* MATRIX DIMENSIONS */

27 1 DECLARE M LITERALLY '160@°';
28 1 DECLARE N LITERALLY '58':
29 1 DECLARE P LITERALLY '78';
36 1 DO I = ¢ TO (M-1);

37 2 DO J = 2 TO (N-1);

38 3 XSROW(I).COL(J) = 2;
39 3 END;

49 2 END;

41 1 DO I = @ TO (N-1);

42 2 DO J =@ TO (P-1);

43 3 YSROW(I).COL(J) = 3:
44 3 END;

45 2 END;

The EXECUTIONSVEHICLE module must be re-
compiled and then the three program modules must
be linked and located using the QRL86 program.
Specifying the SEGMENTS option of QRL86, the
origin of the CODE segment which is in the group
CGROUP is set at 1000H, as in the first example.
However, the origin of the CONST, DATA
STACK and MEMORY segments which make up
the group DGROUP is set at 80000H.

QRLS86 :F1:MATRIX.OBJ,:F1:FIND.OBJ,
SBCIOS.LIB SEGMENTS (CODE(1000H),
CONST (80000H), DATA STACK, MEMORY)

The memory map generated by QRL86 shows the
CGROUP having a start address of 01000H and
the DGROUP having a start address of 80000H.

INVOKED BY:
QRL86 :F1:MATRIY.OBJ,:Fl:FIND.OBJ,SBCIOS.LIB &
SEGMENTS (CODE {10@0H) ,CONST (89886H) ,DATA, STACK ,MEMORY)

INPUT MODULES INCLUDED:
:F1:MATRIY.OBJ (EXECUTIONVEHICLE)
:F1:FIND.OBJ (FIND)
SBCIOS.LIB(SBCCO)

RESULT WRITTEN TO :F1:MATRIY(EXECUTIONVEHICLE)
START ADDRESS IS (#100H,0802H)

START LTH ALIGN NAME CLASS

@1980H 298H
010684 21DH
9121DH 41H
@125EH 3Ad

/GS/ CGROUP
CODE (EXECUTIONVEHICLE) CODE
CODE (FIND) CODE
CODE (SBCCO) CODE
/GE/ CGROUP
/GS/ DGROUP
CONST (EXECUTIONVEHICLE) CONST

EWEOQ

8600¥0OH 79704
8@@U0H CH

866aCH [2:1 CONST (SBCCO) CONST
8000CH 792AH DATA (EXECUTIONVEHICLE) DATA
87936H 24 DATA (FIND) DATA
87938H [2:] DATA (SBCCO) DATA
87940H 38H s STACK STACK
8797¢H oH MEMORY MEMORY

/GE/ DGROUP
22SEG (FIND) {NULL)

Q0 ETIILDIZIQ

879744 oH

The object code is then converted to hex format
and downloaded to the iSBC 86/12 board. When
the program is executed, the maximum value is
calculated and output on the console.

-§8C861
ISIS-11 ISBC 86/12 LOADER, V1.2
1SBC 86/12 MONITOR,,V1.2

LLS,:Fl:MATRIY.HEX

.S1AC, F4- CC
(G 08b2- e

MAX VALUE = +20308@
@6169:01AD 55

VI. CONCLUSION

This application note has described the iSBC 957
Intellec—iSBC 86/12 Interface and Execution
Package, and how this package may be used to
develop and debug programs for the 8086 processor.
First, the iSBC 86/12 single board computer was
described, followed by a detailed description of the
iSBC 957 package and the iSBC 86/12 system
monitor commands. The power and versatility of
the iSBC 957 package and monitor commands for
developing and debugging programs for the 8086
were illustrated by a program example. In the
example a program which consisted of PL/M-86
and assembly language routines was presented. The
program code was explained, and the steps required
to compile, assemble, link, locate, and debug the
program were illustrated. Finally, a typical de-
bugging session using the iISBC 86/ 12 system moni-
tor which illustrates the powerful capabilities of the
monitor was presented.

AP-43

APPENDIX A (1 of 2)

HIN HINM OMLNI BOY
WAL XHIS 1X3 Bd

wim | uim

[XR]

I}

10
HIN (a
jowm. [x1i5]sne | ve

1dNYHILNI ANV LNdLNO/ LNdNI
WYHOVIQ 21901 A3I14ITdNIS Z1L /98 w1 08S!

1 [

I

]

o oumia .
Su3N00s v
Ed [TvNOLLD 3wara |

I TR
RGN BN .
p
Rain ivn HiM s uaa.,.,lwhc i SN o
v reomvisd o V1N B o
THIN daruuaim o J v vg
U 0 ViR 7S] AT ¥ oxn 0)
2¥ o1 v
et 9w vesze v 1uvsn vist 52V 1dd vssze
B 0 2003 N My 5o -
o my ") vivo ~y %) vivo
13838 1353
VIvG
JEERE T
w3aviNiSne
W
180080
. JEEEr T
¥
9| W30 VIN SN
N
S S N3G VINI Y301 T
s 39m0 v
ErCTYe e v
D TrovT y314ne
@ o1 3381 T Vav-eav .
1404 1vno
v
j_ . N30 VIN V30T
¥334n8 —
NG ONO vivo S J0v-0av
2 N
B
wia D
! 955 oy
4300230
£ a3 o sS3uaav SV or
5 T (]
£ w3An0 1
g - sna
H 0V S8OV ss3ua0v T ANV-ONY 300K 3Av7S
lw Jovcav
[w3avsne
i [T oo TR VIN
u3aane
w18y ZLBAV-ONY 317 JWvomy| SS3WOOV o Jav-08v Bav oraav
u3Awa s>
sne
ss3400V
027 T14OY- D40V 91 TiHav- 0150V
me—
‘BuOv-OuaY 5o L G Tiavoiay o1
i v b o 0 A e
¥
ef
w3a5ne S 3av-00v
"~ 300 3nv1S 2
2 T S 3
A w0t [w HOLYY 1ov-oav
01 sna SSIHANY | o mmmmmme—
FTOAD VINT 2 B 610v-9iaY
By [s =
34 uwc_ “BIMn Y 15 HAV O AGY. lu
oo LEE) 507
wH
[
A 3 W [
; ndd
o ° 9 w“u
EEE] DWNZE] cooev 0MIAO - %507 B
LINOHO d Loy «
58 . 3 %0713 JW0I} w3g0030
[30W0. Snivis
— s avan
Neds %0013
[T Dzt
. - B EEF T H
sna 150
ZiF 4OQv 08 NO SMNY BEE)
e oo o Almassy [_W30 ¢ =
o wsliguv %307
o358 7505 o
T "
Asna ¥ 13534 P2
) Fe=T = ”
5538

A-228

AP-43
APPENDIX A (2 of 2)

41¥ORLYO

snaviva
1

WVH LHOd TvNAa ANV WOHd3/WOY
WVH9VIQ 31907 a3I41INdWIS 21 /98 w.08S!

[T
oav
HIARIO
Sn8 viva AM0-)
1 S$3
w3 dvms
[+]
i
UINHD | qp—
ANC-ONG
s

1909%
y344na

viva 9

[T
(iy
|, w3sine
vivg
AHOWIN
vy §
wia ooz 6Ty
R ad
woud
ssauaov |} 10u1NOD 2
"
2 [Tamaxny @
X Jtosawan av 217 oav-iav T
) L4
7] o umouIN0D
vy svvvy
SO M Suov TTBVNG OGS u3aa00
—~ =)
aj . m
omemcrzy 2mz
4300030 amer 300M IV
3400 IOKINO:
N5 WVE 08 230 0
s 1vod wna Q T6VN3 NOBd Y
1oW BaY MYy 08 320 TouAvE 08 NO & 91501
ey TavNI Wowd| aeauooy NOVY WOBd
Ouad | noud g
W3 OV 08 HO 40 NIuov OB RO a0}
B 5 . 1
Tuwav [o : G- o 338
owov (3 1
. U067 | t— w3iana 0 v Tavemy navorAdv
ssasaav WVONY v anv-omy sk $s3¥00Y 917 48v-08Y 40v-00Y
ino ~
T 1 o
30V 58 S00W AV S
e (7%
e (<] 2
|t — W m———
s0cev v ORY "
> o 3av-00v
S Toow eoY ® o,
e
2 32 £18Y-018v 9
[T [=] aj
H D e - g
5 . LI Nav g HOLYY
3| vrou | XA Qu 40 027 tiev-oav ssTuaav >ovX Mvy
2 s 5u0! v S00W AV
@ “Smor] b300030 L £}
Er B [2007
IEMQYIY
>3 “a
> | [~
T sov gy
I nad
[T T
) o0V . w =
anoue O8N y3aga3a L
. ELd Snivis s xavau
EAE] Dwmze L) "y
v o | =5 BOLYHINID sne
MNudo Tiord 139 VINT 3 W15 W 05 ATt
€ D zoves o]
Sovena) o) 13538
o o wav ge N0 3
e o o4 atemassy [M)
ouEd w3LeUY woon (' DU 338! Tiord
oE sne 2508 T 1353y 1
Aso8 1o w5 =
252
2l e Fe
C]

A-229

AP-43

APPENDIX B
PROGRAM LISTINGS FOR EXECUTION$VEHICLE AND FIND MODULES

(PL/M-86 COMPILER EXECUTIONVEHICLE

1SIS-II PL/M-86 V1.¢ COMPILATION OF MODULE EXECUTIONVEHICLE
OBJECT MODULE PLACED IN :F1:MATRIX.OBJ
COMPTLER INVOKED BY: PLMBA :F1:MATRIX.PLM DEBUG

Vad MATRIX MULTIPLICATION EXAMPLE PROGRAM

PL/M-86 MAIN PROGRAM WHICH:
A) INITIALIZES TWO INTEGER MATRICES
8) MULTIPLIES THE TWO MATRICES AND STORES THE RESULT IN A
TRIRD MATRIX
CALLS AN ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES THE
THIRD MATRIX FOR THE MAXIMUM VALUE
D) CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE
FROM INTEGER TO ASCII

o

E) CALLS » PROCEDURE WHICH OUTPUTS THE ASCII CHARACTERS ON
THE SYSTEM CONSOLE
*/
1 EXECUTTONSVEHICLE :
D0;

/* FINDSMX - EXTERNAL ASSEMBLY LANGUAGE PROCEDURE WHTCH SEARCHES A
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE.
PARAMETERS:
MATRIX$ADR - ADDRESS OF THE MATRIX TO BE SEARCHED
ROWS - NUMBER OF ROWS IN THE MATRIX

COLS - NUMBER OF COLUMNS IN THE MATRIX
*

2 FINDSMX: PROCEDURE (MATRIX$PTR, ROWS, COLS) INTEGER EXTERNAL;
N 2 2 DECLARE (ROWS, COLS) INTEGER;
z 2 DECLARE MATRIXSPTR POINTER;
5 2 END FINDSMX;
(/* BINSDEC$ASC - BINARY TO DFCTMAL ASCIT CONVERSION PROCEDURE
PARAMETERS :
VALUE - INTEGER VALUE TO BE CONVERTED TO ASCII
CHARSARRAYSADR - ADDRESS OF 6 BYTE ARRAY WHERE ASCII
STRING CONTAINING THE VALUE WILL BE STORED
*/
501 BINSDECSASC: PROCEDURE (VALUE, CHARSARRAYSADR)
7 2 DECLARE (VALUE, TEMP, I) INTEGER;
@ R 2 DECLARE CHARSARRAYSADR POINTER;
9 2 DECLARE (CHARSARRAY BASED CHARSARRAYSADR) (6) BYTE;
12 2?2 IF VALUE < ¢ THEN
11 2 DO;
12 3 CHARSARRAY (@) = '-'; /* SIGN CHARACTER */
@ 133 TEMP = -VALUE;
14 3 END;
ELSE
15 2 DO; @
16 3 CHARSARRAY (@) = '+';
173 TEMP = VALUE;
18 3 END;
19 2 PO T =5 TO 1 BY -1;
26 3 CHARSARRAY (I) = UNSIGN(TEMP MOD 18) + 30H;
21 3 TEMP = TEMP/1¢;
/* ASCII CHARACTERS 2@ THRU 39 HEX- REPRESENT THE DIGITS € THRU 9. THUS
TO CONVERT AN INTEGER TO ASCIT REPEATED DIVISIONS BY 18 AND ADDING
THE REMATNDER TQ 2@ HEX WILL ACCOMPLISH THE CONVERSION */
22 3 END;
L 23 2 END BINSDECSASC;
/* CO - EXTERNAL PROCEDURE TO OUTPUT A CHARACTER TO THE SYSTEM CONSOLE.
THIS PROCEDURE IS PART OF THE ISBC 957 LIBRARY FOR CONSOLE I/0
@ PARAMETER:
. CHAR - ASCII CHARACTER TO BE OUTPUT ON THE CONSOLE
29 1 CO: PROCEDURE (CHAR) EXTERNAL;
25 2 DECLARE CHAR BYTE;
26 2 END CO;
/* MATRIX DIMENSIONS */
27 1 DECLARE M LITERALLY '6';
28 1 DECLARE N LITERALLY '5'
29 1 DECLARE P LITERALLY '3';
/* THE THREE MATRICES ARE DECLARED AS ARRAYS OF STRUCTURES. XS$ROW IS COMPOSED
OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEMENTS. THUS
XSROW MAY BE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS
A ROW-ORDER MATRIX WITH THE ELEMENTS OF EACH ROW STORED IN ADJACENT MEMORY
LOCATIONS. YS$ROW TS DECLARED AS A N X P MATRIX AND ZSROW AS A N X P MATRIX */
36 1 DECLARE X$ROW(M) STRUCTURE (COL(N) INTEGER);
311 DECLARE YSROW(N) STRUCTURE (COL({P) INTEGER);
32 1 DECLARE ZSROW(M) STRUCTURE (COL(P) INTEGER);
33 1 DECLARE (I,J,K,MAX) INTEGER;
L 1 DECLARE MAXSASCSARRAY (6) BYTE;
35 1 DECLARE TEXT (%) BYTE DATA ('MAX VALUE = ');

A-230

AP-43

4 /* INITIALIZE X$ROW SUCH THAT THE FIRST ROW IS SET EQUAL TO @, THE SECOND

ROW EQUAL TO 1, THE THIRD ROw EQUAL TO 2, ETC.

36 1 DO!=0ITO {M l):

37 2 Do J -1);

28 3 XSROW(I).COL(J) =1;

39 3 END;

< e 2 END;
/* INITIALIZE YSROW SUCH THAT THE FIRST COLUMN IS SET EQUAL TO @, THE

SECOND COLUMN EQUAL TO -1, AND THE THIRD COLUMN EQUAL TO -2. */

41 1 DO I =@ TO (N-1);

42 2 DO J = @ TO (P-1);

43 3 YSROW(I).COL(J) = -J;

a4 3 END;

45 2 END;

/* PERFORM MATRIX MULTIPLICATION */
DO K = ¢ TO (P-1);
DO I = @ TO (M-1);
ZSROW(I).COL(K) = @; /* SET ZSROW ELEMENT TO @ */
DO J = TO (N-1); /* SUM THE PRODUCT OF XSROW ROW TERMS AND YSROW COLUMN TERMS */
NgSROW(I).COL(K) = ZSROW(I).COL(K) + (XSROW(I).COL(J) * YSROW(J).COL(K));

END;
END;

(g N 7
ML S s s
NS o® IR

W s Ww R

MAX = FINDSMX (@ZSROW, M, P); /* FIND MAX VALUE OF ZSROW */

55 1 CALL BINSDECSASC (MAX, @MAXSASCSARRAY); /* CONVERT T0 DECIMAL ASCII */

®@

DO I = @ TO (SIGNBD(SIZE(TEXT)) - 1); /* OUTPUT HEADER TEXT */
CALL CO(TEXT(I));
END;

DO I = @ TO 5; /* OUTPUT ASCII MAX VALUE */
CALL CO(MAXSASCSARRAY(I));
61 2 END;

@
=
N

o aua
0 BN R
(NI

62 1 END EXECUTIONSVEHICLE;

MODULE INFORMATTON:

CODE AREA SIZE @225H 549D

CONSTANT AREA SIZE = @@0CH 12D
VARIABLE AREA SIZE = @Q90H 144D
MAXIMUM STACK SIZE = AQA8H 8D

137 LINES READ
@ PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

(1SIS-11 MCS-86 ASSEMBLER ASSEMBLY OF MODULE FIND

OBJECT MODULE PLACED IN :Fl:FIND.OBJ

ASSEMBLER INVOKED BY: ASM86 :F1:FIND.ASM DEBUG

Loc oBJ LINE SOURCE
1 NAME FIND
2 PUBLIC FINDMX
3
4
5 i
6 H FINDMX
7 H ASSEMBLY LANGUAGE PROCEDURE TO FIND THE ELEMENT OF AN INTEGER
8 H MATRIX WITH THE LARGEST ABSOLUTE MAGNITUDE. THE VALUE OF THE
9 H ELEMENT IS RETURNED IN THE AX REGISTER.
10 H
11 H PL/M CALLING SEQUENCE:
12 H MAX$VALUE = FINDSMX (ADRSOFSMATRIX, #$OFSROWS, #$SOF$COLS);
13 ;
14 H PARAMETERS:
15 H ADROFMATRIX - ADDRESS OF THE MATRIX WHICH WILL BE SEARCHED

® 16 H #SOFSROWS - NUMBER OF ROWS IN THE MATRIX
17 H #SOFSCOLS - NUMBER OF COLUMNS IN THE MATRIX
18 i
19 H PL/M WILL PASS THE THREE PARAMETERS IN THE CALL TO THIS PROCEDURE ON
20 H THE STACK. ON ENTRY TO THE PROCEDURE SP+6 WILL POINT TO THE FIRST
21 H PARAMETER (ADRSOPSMATRIX) AND SP+4 AND SP+2 WILL POINT TO THE SECOND
22 H AND THIRD PARAMETERS.
23 H
24 i THE PROCEDURE 1S A TYPED PROCEDURE WHICH ASSIGNS THE MAXIMUM VALUE
25 H IN THE MATRIX TO A VARIABLE (IN THIS CASE MAXSVALUE) IN A PL/M
26 H ASSIGNMENT STATEMENT., TO ACCOMPLISH THIS ASSIGNMENT THE VALUE IS
27 H RETURNED IN THE AX REGISTER.
28 H
29 ;
30 H THE ALGORITHM USED IS SIMILAR TO THE FOLLOWING PL/M CODE:
31 ; FOR I = @ TO (#SOFSROWS - 1);
32 H FOR J = & TO (#SOFSCOLS - 1);
33 H IF IABS (MATRIX(I1).Y(J)) > IABS(MAX) THEN MAX = MATRIX(I).Y(J);
34 H END;
35 H END;
36 i
37 i WHERE IABS (XYZ) REPRESENTS THE ABSOLUTE VALUE OF THE INTEGER XY2
38 i
~ 39 H

A-231

AP-43

S

|
|
|

©

®

Loc osJ

20ee 000

eepe (14
ofap

2606 (}
00041)
enes ()

areo

eeeps S5

#@81 8BEC
283 33D2
@285 BBFA
@007 BBF2
2809 89169008
80D 8B4EQ4
9018 DIE)

AR12 PBSEPS

e01s gB@g
0017 @BCO
Apl9 7962
@g1B F7D8
#81D 3BC2
@g1F 7C07
e@2]1 8sDe
2023 8BPE
@¢25 A3eece
0828 83C602
@428 3BF1
#02D 72E6
982F 8D18
2831 BEAQRO
¢e34 47
#835 3B7E@6
7838 7208
203A Aloa0@
283D 5D
PB3E C206060

SYMBOL TABLE LISTING

NAME
2?SEG
ABC . .
ADR_OF MATRIX
CGROUP, . .
CODE.
DATA.
DEF
DGROUP. . . .
FINDMX. . . .
MAX . . .
NO_OF CoLs. .
NO_OFTROWS. .
STACK
XYz ...

TYPE

SEGMENT
L NEAR
V WORD
GROUP
SEGMENT
SEGMENT
L NEAR
GROUP
L NEAR
V WORD
V WORD
V WORD
SEGMENT
L NEAR

LINE

VALUE

#015H
2908H

@01DH

eg@eH
2e80H
e004H
@P06H

@928H

APPENDIX B
PROGRAM LISTINGS FOR EXECUTION$VEHICLE AND FIND MODULES

SOURCE

DGROUP GROUP
CGROUP GROUP

DATA,STACK
CODE

DEFINE GROUPS TO CONFORM WITH PL/M-86 CONVENTIONS, DATA, STACK, AND
CODE SEGMENTS WILL BE APPENDED TO THEIR RESPECTIVE SEGMENTS IN THE
PL/M-86 MODULES.

INSTRUCT THE ASSEMBLER THAT THE DS, SS, AND CS REGISTERS WILL CONTAIN
THE BASE ADDRESS VALUES FOR THE DGROUP, DGROUP AND CGROUP GROUPS.

ASSUME DS:DGROUP, SS:DGROUP,CS : CGROUP

RARRFHES 44 RARAADATA SEGMENT

DATA SEGMENT WORD PUBLIC 'DAT.
)

MAX DW
DATA ENDS

i
JERRANNNSRN SRR RASTACK SEGMENT

STACK SEGMENT STACK 'STACK'

DW

STACK ENDS

14 DUP (@)

eaeaesteentsereCODE SEGMENT

éODB SEGMENT BYTE PUBLIC 'COD

; PARAMETERS ON
NO_OF_ROWS
NO_OF _COLS
ADR_OF_MATRIX

FINDMX PROC
PUSH
Mov
XOR
Mov
MoV
MoV
MoV
SHL

MOV
ABC: MoV
OR

JNS
NEG
DEF: CMP

MOV
MoV
MoV
XYZ: ADD
CMp

LEA
MoV
INC
cmp

MoV
poOP
RET

éINDMX ENDP

o

ODE ENDS

END

ATTRIBUTES
SIZE=Q@806H PARA
CODE

(BP)

CODE

SIZE=8041H BYTE
SIZE=08@2H WORD
CODE

DATA STACK

CODE PUBLIC
DATA

(BP)

8P}

SIZE=201CH PARA
CODE

ASSEMBLY COMPLETE, NO ERRORS FOUND

STACK, DISPLACEME
EQU WORD PTR
EQU WORD PTR
EQU WORD PTR

NEAR
BP

BP,SP

DX, DX

DI, DX

SI,DX

MAX , DX
CX,NO_OF_COLS
cx,1

BX,ADR_OF_MATRIX
AX, [BX] [ST]
AX,AX

DEF

AX

AX,DX

XYz

DX, AX

AX, [BX] (51}
MAX,AX

S1,2

SI,Cx

ABC

BX, [BX+S1]
SI,0

DI

DI,NO OF KOWS
ABC

AX,MAX

BP

6

PUBLIC

PUBLIC 'CODE'
PUBLIC 'DATA'

STACK °'STACK'

Al

JRESERVE 13 WORDS OF STACK FOR MONITOR

iAND 1 WORD FOR FINDMX PROCEDURE

E'

NT FROM TOS INCREASED BY TWO DUE TO INITIAL PUSH
[BP+6)
[BP+4]
(BP+8]

i PROCEDURE DECLARATION

;SAVE BP REGIS'

iBP POINTS TO PARAMETERS ON STACK
iSET DX = ABS OF CURRENT MAX = 8
iDI = I(ROW INDEX) = @

;SI = J(COLUMN INDEX) = @

iMAX = CURRENT MAX = ¢

iCX = (#SOF$COLS) * 2

;TERMINATION FOR J(S1) INDEX
;ADRSOFSMATRIX PARAMETER

iBX POINTS TO FIRST ELEMENT OF A GIVEN ROW

;GET ELEMENT OF MATRIX

iSET FLAGS

iJUMP IF SIGN = @

;NEGATE TO FORM POSITIVE NUMBER

iCOMPARE TO CURRENT MAX

;JUMP IF LESS THAN CURRENT MAX

iMOVE TO ABS OF CURRENT MAX

:MOVE MATRIX VALUE TO CURRENT MAX

; INCREMENT J INDEX BY TWO
;END OF THIS ROW 2?

sIF NO, LOOP BACK FOR NEXT ELEMENT OF THIS ROW
iBX = BX + (2 * §SOF$COLS), BX POINTS TO NEXT ROW
J= 8

PI=1 4+ 1

;LAST ROW ??

;IF NO, DO THE NEXT ROW

;RETURN MAX VALUE IN AX REGISTER

;RESTORE BP REGISTER

s INCREMENT SP BY 6 AND RETURN TO CALLER

A-232

AP-43

, ISIS-II QORL-PA, V).1

INVOKED BY:
QRLAA :F):MATRIX.0OBJ,:F1:FIND.OBJ,SBCIOS.LIB ORIGIN(1AP2H)

TNPUT MODULES INCLUDED:
:F1:MATRIX.OBJ (FXFCUTTONVEHICLE)
:F1:FIND.OBJ (FIND)
SBCIOS.LIB(SBCCO)

RESULT WRITTEN TO :F1:MATRIX(EXECUTTONVEHICLE)
START ADDRESS IS (81¢0QH,PAA2H)

START LTH ALIGN NAME CLASS

/GS/ CGROUP
CODE (EXECUTIONVEHICLE! CODE
CODE(FIND) CODE
CODE (SBCCO) CODE
/GE/ CGROUP

=
)
=
~

- N
'
=

w0

G12ACH DBH G /GS/ DGROUP
012A0H CH w CONST (EXECUTIONVEHICLE) CONST
f12ACH (23 w CONST (SBCCO) CONST
012ACH 9¢R w DATA(EXECUTIONVEHICLE) DATA
@133CH 2H w DATA(FIND) DATA
@133EH R w DATA (SBCCO) DATA
#13402H 2QH SW STACK STACK
P1370H @n w MEMORY MEMORY
/GE/ DGROUP
N P1370H 28 G ??SEG(FIND) (NULL)

¢ DEBUG MAP OF :Fl:MATRIX(EXECUTIONVEHICLE)

MODULE: EXECUTIONVEHICLE @1@@H,@1EH 21e¢H,E139H LINE #: 52
@12AH,20DEH SYMBOL: MEMORY #1P€H,21FBH #16eH,M142H LINE #: 53
#10AH,#1B5H SYMBOL: BINDECASC #100H,7212H @1@0H,A14BH LINE #: S4
¢12AH,ACECH SYMBOL: TEMP ?10AH, F21EH ©16AH,P1SEH LINE #: 5%
@) 2AH,RBPEH SYMBOL: I @106H, 02214 @1@EH,€1A9H LINE #: 56
P12AH,A1PH SYMBOL: XROW 010QH, #0228 #1¢0H,@17AH LINE #: 57
P12AH,AB4CH SYMBOL: YROW ?100H,0¢21H rlpeH,0185H LINE #: S8
712AH, EA6AH SYMBOL: ZROW 010aH, 7320 @1@¢H,A18EH LINE #: S¢
#12AH,BP8EH SYMBOL: I #1¢¢H,004BH A1@0H,F)OFH LINE #: 60
® 012AH,AB9@H SYMBOL: J $10A0H, AAS54H 010¢H,F1AAH LINE #: 51
¢12AH,0P92H SYMBOL: K @120H, 29 5DH @16PH,01B3H LINE f: 62
@12AH,FP94H SYMBOL: MAX 71¢PH, PB6EH MODULE: FIN
#12AH,AA9RH SYMBOL: MAXASCARRAY 21¢@H,BATFH 6100H,823AH SYMBOL: ABC
#12AH, PAP@H SYMBOL: TEXT 7le¢H, POICH 8100H,E242H SYMBOL: DEF
21@PH,P1BSH LINE #: 6 @100H, 8AASH 0l1P0H,0225H SYMBOL: FINDMX
P100H,#1BBH LINE #: 10 91908, COAEH @12AH,009CH SYMBOL: MAX
#10#H,81C2H LINE #: 12 #120H,9EBFH 9160H,024DH SYMBOL: XYZ
#10¢H,A1CBH LINE #: 13 91094, BADPH @166H,8225H PUBLIC: FINDMX
@17¢H,¢1DIH LINE #: 14 AleeH, PAETH MODULE: SBCCO
2100H,P1D4H LINE #: 16 710¢H, BAF8H ¢100H,0266H PUBLIC: CO
_ ?107H,@1DAH LINE #: 17 #100H,0)30H

A-233

AP-43

APPENDIX C
PROGRAM LISTING FOR EXECUTION$VEHICLE MODULE WITH CODE EXPANSION

PL/M-86 COMPILER EXECUTIONVEHICLE

ISIS-I1 PL/M-86 V1.0 COMPILATION OF MODULE EXECUTIONVEHICLE
NO OBJECT MODULE REQUESTED
COMPILER INVOKED BY: PLMB6 :F):MATRIX.PLM DEBUG CODE NOOBJECT PRINT(:F1:MATRIX.XLS)

Vad MATRIX MULTIPLICATION EXAMPLE PROGRAM

PL/M-86 MAIN PROGRAM WHICH:

A) INITIALIZES TWO INTEGER MATRICES

B) MULTIPLIES THE TWO MATRICES AND STORES THE RESULT IN A
THIRD MATRIX

C) CALLS AN ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES THE
THIRD MATRIX FOR THE MAXIMUM VALUE

D) CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE
FROM INTEGER TO ASCII

E) TALLS A PROCEDURE WHICH OUTPUTS THE ASCIT CHARACTERS ON
THE SYSTEM CONSOLE

*/

1 EXECUTIONSVEHICLE:
Do;

/* FINDSMX - EXTERNAL ASSEMBLY LANCUAGE PROCEDURE WHICH SEARCHES A
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE.
PARAMETERS:
MATRIXSADR -~ ADDRESS OF THE MATRIX TO BE SEARCHED
ROWS - NUMBER OF ROWS IN THE MATRTX
COLS - NUMBER OF COLUMNS IN THE MATRIX

*/
2 1 FINDSMX: PROCEDURE (MATRIXSPTR, ROWS, COLS) INTEGER EXTERNAL;
2 2 DECLARE (ROWS, COLS) INTEGER;
4 2 DECLARE MATRIXSPTR POINTER;
5 2 END FINDSMX;
/* BINSDECSASC - BINARY TO DECIMAL ASCII CONVERSION PROCEDURE
PARAMETERS :
VALUE - INTEGER VALUE TO BE CONVERTED TO ASCII
CHARSARRAYSADR - ADDRESS OF 6 BYTE ARRAY WHERE ASCII
STRING CONTAINING THE VALUE WILL BE STORED
*/
3 1 BINSDECSASC: PROCEDURE (VALUE, CHARSARRAYSADR);
; STATEMENT # 5
BINDECASC PROC NEAR
@1B5 55 PUSH ap
#1B6 8BEC MoV BP,SP
7 2 DECLARE (VALUE, TEMP, I) INTEGER;
8 2 DECLARE CHARSARRAYSADR POINTER;
9 2 DECLARE (CHARSARRAY BASED CHARSARRAYS$ADR) (6) BYTE;
190 2 IF VALUE < @ THEN
; STATEMENT % 1@
@1BR B17ERAOALA CMP [BP).VALUE, ?H
#1BD 7C@3 JL $+5H
@1BF E912078 JMP el
11 2 DO;
12 3 CHARSARRAY (@) = '-'; /* SIGN CHARACTER */
; STATEMENT # 12
nlC2 8BSERY4 MCV BX, TBP] .CHARARRAYADR
@1C5 C6072D MOV CHARARRAY [BX], 2DH
13 3 TEMP = -VALUE;
; STATEMENT # 13
01C8 8B4606 MOV AX, [BP].VALUE
21CB F7DB NEG AX
£1CD B9FA6POCO MoV TEMP,AX
14 3 END;
; STATEMENT # 14
@l1Dl E9@Dea JMP €2
€l:
ELSE
15 2 DO;
16 3 CHARSARRAY (P) = '+';
; STATEMENT # 156
e1D4 8BSER4 MOV BX, IBP].CHARARRAYADR
@#1D7 C6R72B MoV CHARARRAY rBX1, ?BH
17 3 TEMP = VALUE;
; STATEMENT # 17
PIDA 8B4A{E MoV AX, [BP).VALUE
21DD 8946G7PAR MOV TEMP,AX
18 3 END;
_82:
19 2 DO I =5 TO 1 BY -1;
; STATEMENT # 19
P1El C766082A0250€ MoV I,S5H
¢lE7 EQP6CO JMP es
e3:
@IEA B1E6@2CAFFFF ADD T,AFFFFH

A-234

AP-43

e5:
?1Fe @13E@A2¢0P108 CMP 1,8
€1F6 7DE@3 JGE S+5H
A1F8 E926¢@ JMP e4

CHARSARRAY (I) = UNSIGN(TEMP MOD 1@) + 3@H;
; STATEMENT # 20

@1FB 8BRGO0RH MOV AX,TEMP

@1FF B9BAQY MoV CX, 0AH

@282 31D2 XOR DX,DX

A2¢r4 FIF9 IDIV CcX

8206 81C23008° ADD DX, 3@H

?20A 8BSEMA4 MoV BX, [BP).CHARARRAYADR
#2@D 8B368200 MoV SI,I

2211 881¢ MOV TBX).CHARARRAY [SI), DL

TEMP = TEMP/1@;
; STATEMENT # 21
/* ASCTI CHARACTERS 3@ THRU 39 HEX REPRESENT THE DIGITS # THRU 9. THUS
TO CONVERT AN INTEGER TO ASCII REPEATED DIVISIONS BY 12 AND ADDING
THE REMAINDER TO 3¢ HEX WILL ACCOMPLISH THE CONVERSION */

¢213 8BA60CA0 MoV AX, TEMP
2217 99 CWD
9218 F7F9 IDIV cx
©21a 890950000 MOV TEMP,AX
END;
; STATEMENT # 22
@21E E9CYFF JMP e3
END BINSDECSASC;
; STATEMENT # 23
8221 SD POP BP
#222 C2a4n0 RET 2K
BINDECASC ENDP

/* CO - EXTERNAL PROCEDURE TO OUTPUT A CHARACTER TO THE SYSTEM CONSOLE.
THIS PROCEDURE IS PART OF THE ISBC 957 LIBRARY FOR CONSOLE 1/0
PARAMETER:

CHAR - ASCII CHARACTER TC BE QUTPUT ON THE CONSOLE
*/

24
25
26

28
29

€0: PROCEDURE (CHAR) EXTERNAL;

DECLARE CHAR BYTE;
END CO;

/* MATRIX DIMENSIONS */
DECLARE M LITERALLY '6';
DECLARE N LITERALLY 'S';
DECLARE P LITERALLY ‘3';

/* THE THREE MATRICES ARE DECLARED AS ARRAYS OF STRUCTURES. X$ROW IS COMPOSED
OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEMENTS. THUS
XSROW MAY BE THOUGHT OF AS A M X N MATRIX. THE MATRIX WILL BE STORED AS
A ROW-ORDER MATRIX WITH THE ELEMENTS OF EACH ROW STORED IN ADJACENT MEMORY
LOCATIONS. YSROW IS DECLARED AS A N X P MATRIX AND ZSROW AS A N X P MATRIX */

kI
22
31

EES

36

38

39

DECLARE X$ROW(M) STRUCTURE (COL(N) INTEGER);
DECLARE YSROW (N} STRUCTURE (COL(P) INTEGER);
DECLARE ZSROW(M) STRUCTURE (COL(P) INTEGER);

DE
DE
DE

/*

CLARE (I,J,K,MAX) INTEGER;

CLARE MAXSASCSARRAY (6)

BYTE;

CLARE TEXT (*) BYTE DATA ('MAX VALUE = ');

INITIALIZE XSROW SUCH THAT THE FIRST ROW IS SET EQUAL TO @,

ROW EQUAL TO 1, THE THIRD ROW EQUAL TO 2, ETC.

DO I = @ TO (M-1);
STATEMENT % 36
o002 CLI
2003 44 MoV S5,CS:@@STACKSFRAME
eaes MOV SP,@@STACKSOFFSET
oeoB MoV BP,SP
208D PUSH ss
990E POP DS
fQ0F FB STI
8e18 C706820ﬂﬂgﬂﬂ MoV I,0H
a6:
@216 813E82aR7508 cmMp 1,5H
aa1Cc 7ER3 JLE $+5H
P@1E E93Cea JMP f7

DO J = 8 TO (N-1);

; STATEMENT ¢ 37

af21 C7068400000¢C MoV J,8H
8027 B813E84000400 CMP J, 44
8a2D 7EP3 JLE $+5H
@@2F E9220¢ JMP 9
X$ROW (1).COL(J) = I;
; STATEMENT # 238
PB32 RBO6B2AD MOV X, I
P36 BICAONE MOV CX, PAH
@rf39 F7EQ IMUL CX
@A3B 8B368464 MOV SI1,J
BB3F DIE6 SHL SI,1
@041 89C3 MOV BX,AX
2643 ABPEB20¢ MoV CcX, 1
fp47 89esesne MOV fBX].XROWISI],CX
END;

A-235

AP-43

a0

42

43

e

45

a7

28

fn4s
2051

EN

ersa
2B5A

/*
Do
285D

0063
aee9
[:143:]

OP6E

0874
297Aa
e@7¢c

287F
2083
085
2886
208A
2p8D
028F
0093
2095
2097
an98

aa9cC
QA2

EN

CAAE

7084
#eBA
afBC

ACBF

facs
@ecB
fdcD

2nDa
@@D4
aen7
a@eD9
efDD
AADF
enEL

gnE7

PRED
QOF2
0AFS

ABF8
@AFC
@OFF
2181
2105
nl1e7
@108
a1ac
a1eF
2111
a115
f117
9119
@11D
@11E
2122
2123
2127

STATEMENT # 39

STATEMENT # 40

INITIALTZE YSROW SUCH THAT THE FIRST COLUMN IS SET EQUAL TO ¢, THE
*/

/* SUM THE PRODUCT OF X$ROW ROW TERMS AND YSROW COLUMN TERMS */

STATEMENT # 41

STATEMENT ¥ 42

STATEMENT # 43

1
s11,cx

STATEMENT # 44

STATEMENT # 45

STATEMENT # 25

STATEMENT 4 27

3ET ZSROW ELEMENT TO @

STATEMENT 4 48

IS11,0H

STATEMENT # 49

(K)y + ¢
STATEMENT % 5¢

AX,[BX].YROW(DI1

P1o6g4@PA1EE ADD 3,0
E9D3FF amp 8
@o:
D;
810682009100 ADD 1,H
ECBOFF Jmp 6
a7:
SECOND COLUMN EQUAL TO -1,
I =0 T0 (N-1);
c70682020000 MOV I,0H
813E820084AP CMP 1,44
7E03 JLE S+5H
£94000 amp a1l
DO J = @ TO (P-1);
i
C70684000020 MOV J,0H
gl2:
813E84000200 CMP J,2H
7E03 JLE $45H
£9260¢ 013
YSROW (1) .COL(J) = -J;
88068400 MOV AX,J
F7D8 NEG AX
50 PUSH AX s
88068280 MoV AX,1
B906B0 MoV cX, 6H
FTEQ IMUL CX
88368400 MoV s1,J
DIEA SHL S1,1
89C3 MoV BX, AX
59 PoP cx ;
89884000 MoV 18X1. YROW
D;
810684200100 ADD 3,18
E9CFFF JMp e12
R13:
D;
81A682000107 ADD 1,18
E9RSEF Jmp a1
erl:
PERFORM MATRIX MULTIPLICATION */
K = ¢ TO (P-1);
C70RBRAABEAR MOV K, oH
14:
B13ERGAPA20G CMP K, 24
7E03 JLE cesH
ggacen JMp @5
DO I =0 TO (M-1);
c706e2¢erece MOV t,7H
€16:
£13ER2000500 CMP 1,
7603 JLE Se5H
ES7200 IMP 217
ZSROW (1) .COL(K) = @; /*
88068200 mov AX, I
BO26RE MoV cx,<H
F7EQ IMUL CX
88368600 MoV ST,K
DIER SHL S1,1
9c3 MoV BX, AX
C7805E@EABAR MOV TBX) . ZROW
D0 J =@ TO (N-1);
C70684000000 Mov 3, P8 !
§13EBARPA4RE CMP 3,44
7603 JLE si5H
£94100 JMP
ZSROW (1) .COL(K) = ZSROW(1).COL
;
98268208 Mov AX, 1
B9PAGA MoV CX, ¢AH
F7E9 MUL X
88368400 MoV s1,J
DIEG SHL SI,1
50 PUSH AX ;
88068400 MoV AX,J
R9062E MoV CX, 6H
F7E9 MUL CX
8B3EB6AR MoV DI, K
DIE7 SHL DI, 1
89C3 MoV BX, AX
88814000 MoV
58 POP BX ;
F7A80400 IMUL {BX] . XROW[SI]
58 PUSH AX ;1
88068270 MoV AX, T
F7E9 UL CX
89c3 MoV BX,AX

2129

XSROW(I).COL(J)

AND THE THIRD COLUMN EQUAL TO -2.

* YSROW(J).COL(K)

Vi

A-236

AP-43

2128 5B POP AX i1
P12C ¢21815E¢0 ADD TBX1.ZROW[DI],AX
<1 4 END;
; STATEMENT # S1
#1390 8106847008100 ADD J, 1H
#1346 E9BAFF Jmp ele
f19:
52 3 END;
i STATEMENT ¥ 52
P139 81AAR20PB162 ADD I,1H
@13F E983FF Jmp @16
f17:
53 2 END;
; STATEMENT § 52
M142 £10686AAALED ADD K, 1H
2148 E9A9FF JMP a4
e1%:
54 1 MAX = FINDSMX (@ZSROW, M, P); /* FIND MAX VALUE OF ZSROW */
;i STATEMENT ¢ 54
#14B BBSE@G MCV AX,OFFSET (ZROW)
P14E 50 PUSH AX i1
A14F BEMAP? Mov AX,AH
#7152 59 PUSH L ;2
2152 BBe3AR mov AX,3H
R156 S@ PUSH AX i 3
a157 EB8eZeer CALL FINDMX
P15A 89A688AR MAX, AX
55 1 CALL BINSDECSASC (MAX, @MAXSASCSARRAY); /* CONVERT TO DECIMAL ASCII */
; STATEMENT # 55
@15 FF3688a¢Q PUSH MAX i1
6162 BBBAAG MOV AX,OFFSET(MAXASCARRAY)
@165 sS@ PUSH AX i 2
A166 EB4COP CALL BINDECASC
56 1 DO I = @ TO (SIGNED(SIZE(TEXT)) - 1); /* OUTPUT HEADER TEXT */
; STATEMENT # 56
R169 C70682000020 Mov I,0H
A16F @13E82000BE0 CMP 1,0BH
8175 7ER3 JLE $+5H
@177 E9l40m JMP e21
57 2 CALL CO(TEXT(1));
; STATEMENT # 57
#)7A RB1EB280 Mov BX,I
@17E FFB780A0 PUSH TEXT(BX]; 1
2182 EB8@eNd CALL co
58 2 END;
; STATEMENT # 58
#185 810682040100 ADD I,)H
@188 EQEIFF JMp a20
e21:
59 1 DO I = ¢ TO 5; /* OUTPUT ASCII MAX VALUE */
; STATEMENT # 59
RLEE CT70682040000 MOV I,0H
822:
8124 B13ER26A0590 cMP 1,5H
@19A 7E@3 JLE $+5H
@19C E9l40¢ JM 823
4 2 CALL CO(MAXSASCSARRAY(T));
; STATEMENT # 680
A19F BBIER20@ MoV BX,I
@1A3 FFB78AA8 PUSH MAXASCARRAY (BX1; 1
71A7 EB82AQB CALL co
Al 2 END;
; STATEMENT # 61
21AA 818A820020107 ADD 1,14
?1B@ EYELFF JMp @22
e23:
62 1 END EXECUTIONSVEHICLE;
; STATEMENT § €2
@1B3 FB STI
@1B4 F4 HLT
MODULE INFORMATION:
CODE AREA SIZE = @225H 549D
CONSTANT AREA SIZE = BAOCH 12D
VARIABLE AREA SIZE = @@98H 144D
MAXIMUM STACK SIZE = @088H 8D

137 LINES READ
@ PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

A-237/A-238

